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Motivation

An old idea of Witten [Landweber]

The elliptic cohomology of a space X is related to the T−equivariant
K-theory of LX = C∞(S1,X ) with the circle T acting on LX by rotating
loops.

It’s surprisingly difficult to make this precise.

Why?

In application, one needs to consider the case that a group G acts on X .
In this case the loop space LX has rich structures as an orbifold.

I will show the relation between Tate K-theory and the loop space, which
in fact bring a new theory, quasi-elliptic cohomology.
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Bibundle

Bibundles ∼ ”bimodules” in geometry

Bibundles combine several widely used notions, including smooth maps,
Lie homomorphisms, and principal bundles.

A bibundle from H to G [Schommer-Pries] [Lerman]

a smooth manifold P together with

the structure maps:
• τ : P −→ G0; • a surjective submersion σ : P −→ H0.

The action maps in ManG0×H0

• G1 s
×

τ
P −→ P; • P

σ
×

t
H1 −→ P

such that
• g1 · (g2 ·p) = (g1g2) ·p; • (p ·h1) ·h2 = p · (h1h2); • g · (p ·h) = (g ·p) ·h
• p · uH(σ(p)) = p and uG (τ(p)) · p = p for all p ∈ P.
• G1 s

×
τ
P −→ P

σ
×

σ
P (g , p) 7→ (g · p, p) is an isomorphism.
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The Loop Space of Interest

Example (Loop(X//G ) := Bibun(S1//∗,X//G ))

Objects:

P := {S1 P
πoo f // X}

Morphisms:

S1 P
πoo

α

��

f // X

P ′
π′

``AAAAAAA f ′

??~~~~~~~~

Example (Loopext(X//G ))

S1

t
��

P
πoo

α

��

f // X

S1 P ′
π′

oo
f ′

??��������
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Quasi-elliptic cohomology

The isotropy groups in Loopext(X//G ) may be infinite dimensional
topological groups when G is not finite.

the subgroupoid Λ(X//G ) instead

Λ(X//G ) :=
∐

g∈G tors
conj

X g//ΛG (g)

G tors
conj : a set of representatives of G−conjugacy classes in G tors ;

ΛG (g) = CG (g)× R/〈(g ,−1)〉

QEll as equivariant K−theories

QEllG (X ) ∼=
∏

g∈G tors
conj

KΛG (g)(X
g )

Relation with Tate K-theory

QEll∗G (X )⊗Z[q±] Z((q)) ∼= K ∗
Tate(X//G ).
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Power Operation

Quasi-elliptic cohomology has power operations, which gives it the
structure of an ”H∞−ring theory” [Ganter 06].

Atiyah’s Power Operation [Ganter]

V : a vector bundle over Λ(X//G ).

Pn(V ) := V ⊗̂Z[q±]n defines an operation

Pn : QEllG (X ) −→ QEllG oΣn(X
×n)

Pn =
∏

(g ,σ)∈(G oΣn)torsconj

P(g ,σ) :

QEllG (X ) −→ QEllG oΣn(X
×n) =

∏
(g ,σ)∈(G oΣn)torsconj

KΛG oΣn (g ,σ)((X
×n)(g ,σ)).

P(g ,σ) : QEllG (X )
U∗
−→ Korb(Λ(g ,σ)(X ))

( )Λk−→ Korb(Λ
var
(g ,σ)(X ))

�−→ Korb(d(g ,σ)(X ))
f ∗
(g,σ)

−→ KΛG oΣn (g ,σ)((X
×n)(g ,σ))
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Example ( G = e )

QEll∗G (X ) = K ∗
T(X ). For each σ ∈ Σn, P(1,σ)(x) = �k �(i1,···ik ) (x)k .

When n = 2,

QEllΣ2(X × X ) ∼= K (X × X )[q±][1, s]/(s2 − 1)× K (X )[q±][y ]/(y2 − q)

P2(x) = (P(1,(1)(1))(x), P(1,(12))(x)) = (x � x , (x)2).

When n = 3, P3(x) = (P(1,(1)(1)(1))(x), P(1,(12)(1))(x), P(1,(123))(x)) =
(x � x � x , (x)2 � x , (x)3).

A Ring Homomorphism

PN : QEllG (X )
PN−→ QEllG oΣN

(X×N)
res−→ QEllG×ΣN

(X×N)
diag∗
−→

QEllG×ΣN
(X ) ∼= QEllG (X )⊗Z[q±] QEllΣN

(pt) −→
QEllG (X )⊗Z[q±] QEllΣN

(pt)/IQEll
tr

analogous to the Adams operations of equivariant K-theories.

but different and new.
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Finite Subgroups of Tate Curve

Theorem (Huan)

QEll(pt//ΣN)/IQEll
tr

∼=
∏

N=de

Z[q±][q′±]/〈qd − q′e〉,

where IQEll
tr is the transfer ideal and q′ is the image of q under the power

operation PN . The product goes over all the ordered pairs of positive
integers (d , e) such that N = de.

Theorem (Huan)

The Tate K-theory of symmetric groups modulo a certain transfer ideal
classifies finite subgroups of the Tate curve.

KTate(pt//ΣN)/ITate
tr

∼=
∏

N=de

Z((q))[q′s
±]/〈qd − q′s

e〉,

where ITate
tr is the transfer ideal and q′s is the image of q under the stringy

power operation Pstring
N , the product goes over all the ordered pairs of

positive integers (d , e) such that N = de.
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Orthogonal G−Spectra

Goerss-Hopkins-Miller theorem constructs many example of E∞−rings
which represent elliptic cohomology theories, including Tate K-theory.

Question

Can we construct E∞ − G−spectrum which represents equivariant elliptic
cohomology theory (e.g. G−equivariant Tate K-theory)?

Orthogonal G−spectra of quasi-elliptic cohomology [Huan]

We construct a commutative IG−FSP (E (G ,−), η, µ). For each faithful
G−representation V , E (G ,V ) weakly represents QEllVG (−) in the sense

πk(E (G ,V )) = QEllVG (Sk), for each k.

Can E (G ,−) arise from an orthogonal spectrum?

No.
For a trivial G−representation V , the G−action on E (G ,V ) is not trivial.
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a new Global Homotopy Theory

Global Homotopy Theory [Schwede][May]

Observation: It has been noticed since the beginning of equivariant
homotopy theory that certain theories naturally exist not just for a
particular group, but in a uniform way for all groups in a specific class.
⇒ global homotopy theory
Prominent examples: equivariant stable homotopy, equivariant K-theory,
equivariant bordism.

Almost Global Homotopy Theory [Huan]

an extension of global homotopy theory;

classifies those theories that are almost ”global”;

the restriction maps are equivariant weak equivalence.

We can define global quasi-elliptic cohomology. [Huan]

Combining the orthogonal G−spectra {E (G ,−)}, we get an
ultra-commutative global ring spectrum in the new theory.
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Model Structure on the almost global spaces

We formulate several model structures and are formulating the one below.

Conjecture

There is a global model structure on the almost global spaces that is
Quillen equivalent to the global model structure on the orthogonal spaces
formulated by Schwede in Global Homotopy Theory.
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Thank you.
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