Power Operation Quasi-elliptic cohomology has power operations. So it has the structure of an " H_{∞} -ring theory". Atiyah's Power Operation as Equivariant K-theories V: a vector bundle over $\Lambda(X/\!/G)$. $P_n: QEll_G(X) \longrightarrow QEll_{G \wr \Sigma_n}(X^{\times n}), V \mapsto V^{\widehat{\otimes}_{\mathbb{Z}[q^{\pm}]}n}$ The Power Operation that is "Elliptic" $\mathbb{P}_{(g,\sigma)}: QEll_{G}(X) \longrightarrow QEll_{G \wr \Sigma_n}(X^{\times n})$ $\mathbb{P}_n =$ $(g,\sigma) \in (G \wr \Sigma_n)_{coni}^{tors}$ $\mathbb{P}_{(g,\sigma)}: QEll_{G}(X) \xrightarrow{U^{*}} K_{orb}(\Lambda_{(g,\sigma)}(X)) \xrightarrow{()^{\wedge}_{k}} K_{orb}(\Lambda_{(g,\sigma)}^{var}(X))$ $\xrightarrow{\boxtimes} K_{orb}(d_{(g,\sigma)}(X)) \xrightarrow{f_{(\underline{g},\sigma)}^*} K_{\Lambda_{G\Sigma_n}(g,\sigma)}((X^{\times n})^{(\underline{g},\sigma)})$ $\begin{array}{c} m_1g_1 \\ m_1g_1 \\ m_1g_1 \\ m_1g_1 \\ m_2 \\ m_1g_1 \\ m_2 \\ m_1g_1 \\ m_1g_1 \\ m_2 \\ m_1g_1 \\ m_1g_$ Question Can we have Strickland's theorem for Tate K-Theory? The Finite Subgroups of the Tate Curve The finite subgroups of the Tate curve of order N can be classified by $\mathcal{O}_{Sub_N} = \prod \mathbb{Z}((q))[q'^{\pm}_s]/\langle q^d - q'^e_s \rangle.$ N=de Transfer Ideals $I_{tr}^{Tate} := \sum \text{Image}[I_{\Sigma_i \times \Sigma_i}^{\Sigma_N} : K_{Tate}(\text{pt}/\!/ \Sigma_i \times \Sigma_j) \longrightarrow K_{Tate}(\text{pt}/\!/ \Sigma_N)]$ *i+j=N*, *N>j>*0 $\mathcal{I}_{tr}^{QEII} := \sum \mathsf{Image}[\mathcal{I}_{\Sigma_i \times \Sigma_i}^{\Sigma_N}: QEII(\mathsf{pt}/\!\!/ \Sigma_i \times \Sigma_j) \longrightarrow QEII(\mathsf{pt}/\!\!/ \Sigma_N)]$ i+j=N,N>j>0Classification of the Finite Subgroups of Tate Curve Theorem (Huan) $QEII(pt/\!\!/\Sigma_N)/\mathcal{I}_{tr}^{QEII} \cong \prod \mathbb{Z}[q^{\pm}][q'^{\pm}]/\langle q^d - q'^e \rangle,$ where q' is the image of q under the power operation \mathbb{P}_N . Theorem (Huan) The Tate K-theory of symmetric groups modulo the transfer ideal classifies the finite subgroups of the Tate curve. $K_{Tate}(pt/\!\!/\Sigma_N)/I_{tr}^{Tate} \cong \prod \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$

where q'_s is the image of q under the stringy power operation P_N^{string} .

Quasi-Elliptic Cohomology

Zhen Huan

Sun Yat-sen University

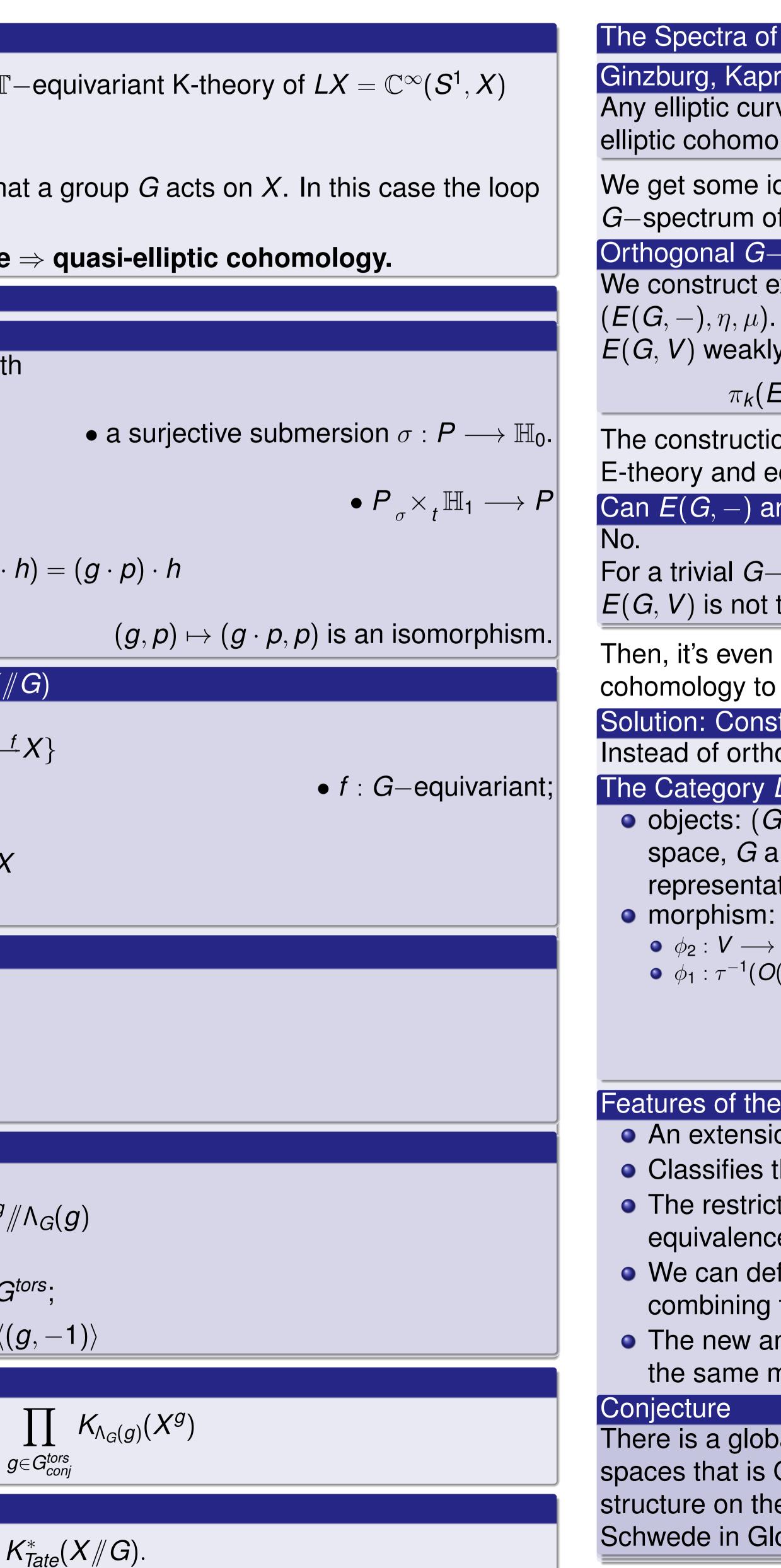
International Festival in Schubert Calculus, November 6-10, 2017

Motivation: An old idea by Witten

• The elliptic cohomology of a space X is related to the \mathbb{T} -equivariant K-theory of $LX = \mathbb{C}^{\infty}(S^1, X)$ with the circle \mathbb{T} acting on *LX* by rotating loops. It's surprisingly difficult to make this precise! • Why? In application, one needs to consider the case that a group G acts on X. In this case the loop space LX has rich structures as an orbifold. The relation between Tate K-theory and the loop space \Rightarrow quasi-elliptic cohomology. Construction The Key Concept: Bibundles A bibundle from \mathbb{H} to \mathbb{G} is a smooth manifold *P* together with • the structure maps: • $\tau: \boldsymbol{P} \longrightarrow \mathbb{G}_0;$ • The action maps in $Man_{G_0 \times H_0}$ • $\mathbb{G}_1 \xrightarrow{} P \longrightarrow P;$ such that • $g_1 \cdot (g_2 \cdot p) = (g_1g_2) \cdot p;$ • $(p \cdot h_1) \cdot h_2 = p \cdot (h_1h_2);$ • $g \cdot (p \cdot h) = (g \cdot p) \cdot h$ • $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$. $\bullet \mathbb{G}_1 \times_{\tau} P \longrightarrow P \xrightarrow{\sigma} \times_{\sigma} P$ The Loop Space of Interest: $Loop(X/\!/G) := Bibun(S^1/\!/*, X/\!/G)$ • Objects: $\mathcal{P} := \{S^1 - P - f X\}$ • π : principal *G*-bundle over *S*¹ • Morphism $\mathcal{P} \longrightarrow \mathcal{P}': G$ -bundle map $\alpha: \mathcal{P} \longrightarrow \mathcal{P}'$ $S^{1}_{\pi} \xrightarrow{P}_{P'} X$ The Loop Space with All the Data: $Loop^{ext}(X/\!/G)$ Add the rotations: The Groupoid We Really Study: $\Lambda(X/\!/G)$ A subgroupoid of $Loop^{ext}(X/\!\!/ G)$ $\Lambda(X/\!\!/ G) := \prod X^g/\!\!/ \Lambda_G(g)$ $g{\in}G_{coni}^{tors}$ G_{coni}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} ; $\Lambda_G(g) = C_G(g) imes \mathbb{R}/\langle (g,-1)
angle$ The Definition of Quasi-elliptic cohomology $QEII_G(X) := K_{orb}(\Lambda(X/\!\!/ G)) \cong \prod K_{\Lambda_G(g)}(X^g)$

Relation with Tate K-theory

 $QEll^*_G(X)\otimes_{\mathbb{Z}[q^{\pm}]}\mathbb{Z}((q))\cong K^*_{Tate}(X/\!\!/ G).$



FEquivariant Elliptic Cohomologies
ranov and Vasserot's Conjecture
ve A gives rise to a unique equivariant plogy theory, natural in A.
dea with the construction of the orthogonal of quasi-elliptic cohomology.
-spectrum of quasi-elliptic cohomology
explicitly a commutative \mathcal{I}_G —FSP For each faithful <i>G</i> —representation <i>V</i> , y represents $QEII_G^V(-)$ in the sense
$\Xi(G, V)) = QEII_G^V(S^k)$, for each k.
on can be applied to generalized Morava equivariant Tate K-theory.
rise from an orthogonal spectrum?
-representation V , the G -action on trivial.
more difficult for equivariant elliptic fit into the global homotopy theory! struct a New Global Homotopy Theory
ogonal spaces, we study D_0 -spaces.
D_0
$G, V, \rho) \text{ with } V \text{ an inner product vector} \\ a \text{ compact group and } \rho \text{ a faithful group} \\ \text{ations } \rho : G \longrightarrow O(V), \\ \phi = (\phi_1, \phi_2) : (G, V, \rho) \longrightarrow (H, W, \tau) \\ W \text{ a linear isometric embedding} \\ (\phi_2(V))) \longrightarrow G \text{ group homomorphism} \\ G \xrightarrow{\rho} O(V) \\ \phi_1 \qquad $
e New Global Homotopy Theory
on of global homotopy theory; those theories that should be global; tion maps are equivariant weak e;
fine global quasi-elliptic cohomology by the orthogonal G -spectrum $\{E(G, -)\}$; nd old global homotopy theories describe nathematical world. We are proving
oal model structure on the almost global Quillen equivalent to the global model e orthogonal spaces formulated by obal Homotopy Theory.