Knot theory: an introduction

Zhen Huan

Center for Mathematical Sciences Huazhong University of Science and Technology

USTC, December 25, 2019

Shoelace

2 / 40

Braids

Knot bread

German bread: the pretzel

Zhen Huan (HUST)

Knot theory: an introduction

USTC, December 25, 2019 5 / 40

Rope Mat

Zhen Huan (HUST)

Chinese Knots

7 / 40

Knot bracelet

Zhen Huan (HUST)

Knot theory: an introduction

USTC, December 25, 2019 8

8 / 40

Knitting

More Knitting

DNA

Wire Mess

Chinese talking knots (knotted strings)

Inca Quipu

Zhen Huan (HUST)

Knot theory: an introduction

USTC, December 25, 2019 13 / 40

Endless Knot in Buddhism

Celtic Knots

Celtic Knots

- Are knots worthwhile to study? Are there any problems on knots worth studying?
- How can knots be viewed as mathematical objects? How should we define a knot?
- How should we extract mathematical information from a knot? How should we study it?

- Are knots worthwhile to study? Are there any problems on knots worth studying?
- How can knots be viewed as mathematical objects? How should we define a knot?
- How should we extract mathematical information from a knot? How should we study it?

- Are knots worthwhile to study? Are there any problems on knots worth studying?
- How can knots be viewed as mathematical objects? How should we define a knot?
- How should we extract mathematical information from a knot? How should we study it?

- Are knots worthwhile to study? Are there any problems on knots worth studying?
- How can knots be viewed as mathematical objects? How should we define a knot?
- How should we extract mathematical information from a knot? How should we study it?

Definition: Links and Knots

Knots: an embedding of a circle in the three-dimensional world.

Links: an embedding of more than one circles in the three-dimensional world.

Definition: Links and Knots

Definition: Links and Knots

Definition: Links and Knots

Definition: Links and Knots

A link of *m* components is a subset of S^3 (or \mathbb{R}^3) that consists of *m* disjoint, piecewise linear, simple closed curves.

A link of one component is a **knot**.

Definition: Links and Knots

Equivalent Links

Links L_1 and L_2 in S^3 are equivalent if there is an orientation-preserving piecewise linear homeomorphism $H: S^3 \longrightarrow S^3$ such that $H(L_1) = L_2$.

Answer: Equivalent links will be regarded as the same link. In other words, H is isotopic to the identity.

lsotopy

Equivalent Links

Links L_1 and L_2 in S^3 are equivalent if there is an orientation-preserving piecewise linear homeomorphism $H: S^3 \longrightarrow S^3$ such that $H(L_1) = L_2$.

Answer: Equivalent links will be regarded as the same link. In other words, *H* is isotopic to the identity.

lsotopy

Equivalent Links

Links L_1 and L_2 in S^3 are equivalent if there is an orientation-preserving piecewise linear homeomorphism $H: S^3 \longrightarrow S^3$ such that $H(L_1) = L_2$.

Answer: Equivalent links will be regarded as the same link. In other words, H is isotopic to the identity.

lsotopy

Equivalent Links

Links L_1 and L_2 in S^3 are equivalent if there is an orientation-preserving piecewise linear homeomorphism $H: S^3 \longrightarrow S^3$ such that $H(L_1) = L_2$.

Answer: Equivalent links will be regarded as the same link. In other words, H is isotopic to the identity.

lsotopy

Equivalent Links

Links L_1 and L_2 in S^3 are equivalent if there is an orientation-preserving piecewise linear homeomorphism $H: S^3 \longrightarrow S^3$ such that $H(L_1) = L_2$.

Answer: Equivalent links will be regarded as the same link. In other words, H is isotopic to the identity.

Isotopy

A Classical Result

two knots with homeomorphic oriented complements are equivalent.

This is not true generally for links with more than one component.

When we concentrate on knots themselves, start by *mathematicizing* them.

How to represent a knot/link: Link diagram

The image of a link L in \mathbb{R}^2 together with "over and under" information at the crossings is called a link diagram of L.

How to judge equivalent knots/links directly: Reidemeister Theorem

A Classical Result

two knots with homeomorphic oriented complements are equivalent. This is not true generally for links with more than one component.

When we concentrate on knots themselves, start by *mathematicizing* them.

How to represent a knot/link: Link diagram

The image of a link L in \mathbb{R}^2 together with "over and under" information at the crossings is called a link diagram of L.

How to judge equivalent knots/links directly: Reidemeister Theorem

A Classical Result

two knots with homeomorphic oriented complements are equivalent. This is not true generally for links with more than one component.

When we concentrate on knots themselves, start by *mathematicizing* them.

How to represent a knot/link: Link diagram

The image of a link L in \mathbb{R}^2 together with "over and under" information at the crossings is called a link diagram of L.

How to judge equivalent knots/links directly: Reidemeister Theorem

A Classical Result

two knots with homeomorphic oriented complements are equivalent. This is not true generally for links with more than one component.

When we concentrate on knots themselves, start by *mathematicizing* them.

How to represent a knot/link: Link diagram

The image of a link L in \mathbb{R}^2 together with "over and under" information at the crossings is called a link diagram of L.

How to judge equivalent knots/links directly: Reidemeister Theorem

A Classical Result

two knots with homeomorphic oriented complements are equivalent. This is not true generally for links with more than one component.

When we concentrate on knots themselves, start by *mathematicizing* them.

How to represent a knot/link: Link diagram

The image of a link L in \mathbb{R}^2 together with "over and under" information at the crossings is called a link diagram of L.

How to judge equivalent knots/links directly: Reidemeister Theorem
Knot theory forms a fundamental source of examples in 3-manifold theory.

A Classical Result

two knots with homeomorphic oriented complements are equivalent. This is not true generally for links with more than one component.

When we concentrate on knots themselves, start by *mathematicizing* them.

How to represent a knot/link: Link diagram

The image of a link L in \mathbb{R}^2 together with "over and under" information at the crossings is called a link diagram of L.

How to judge equivalent knots/links directly: Reidemeister Theorem

Any two diagrams of equivalent links are related by a sequence of Reidemeister moves and an orientation preserving homeomorphisms of the plane.

The three types of Reidemeister moves

Connected sum of Knots

Step I: Start by disjoint planar diagrams.

Step II: Connect by a band with no twist and no extra intersection with the knots.

Step III: Finish by erasing the arcs.

Prime Knots

Definition

A knot is a prime knot if it is not the unknot, and $K = K_1 + K_2$ implies that K_1 or K_2 is the unknot.

Example: torus knots

(p,q)-torus knot: wrap a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

a

Prime Knots

Definition

A knot is a prime knot if it is not the unknot, and $K = K_1 + K_2$ implies that K_1 or K_2 is the unknot.

Example: torus knots

(p,q)-torus knot: wrap a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

Zhen Huan (HUST)

Peter Guthrie Tait

• Oriented link \Rightarrow a Laurent polynomial with integer coefficients.

- Reidemeister move \Rightarrow same polynomial.
- Investigate the crossings of the knots.

- Oriented link \Rightarrow a Laurent polynomial with integer coefficients.
- Reidemeister move \Rightarrow same polynomial.
- Investigate the crossings of the knots.

- Oriented link \Rightarrow a Laurent polynomial with integer coefficients.
- Reidemeister move \Rightarrow same polynomial.
- Investigate the crossings of the knots.

Definition

Unoriented link diagrams \Rightarrow Laurent polynomials with integer coefficients.

1.
$$\left\langle \bigcirc \right\rangle = 1$$

2. $\left\langle L \cup \bigcirc \right\rangle = (-A^2 - A^{-2}) \langle L \rangle$
3. $\left\langle \bigcirc \right\rangle = A \left\langle \bigcirc \right\rangle + A^{-1} \left\langle \bigcirc \right\rangle$

Type I Reidemeister Move

$$\left\langle \begin{array}{c} \left\rangle \right\rangle \right\rangle = -A^{3}\left\langle \right\rangle \right\rangle \\ \left\langle \begin{array}{c} \left\rangle \right\rangle \right\rangle = -A^{-3}\left\langle \right\rangle \right\rangle$$

Type II and Type III Reidemeister move

 $\langle D \rangle$ is invariant.

Kauffman bracket polynomial is NOT an invariant of oriented link.

Type I Reidemeister Move

$$\left\langle \begin{array}{c} \left\rangle \right\rangle \right\rangle = -A^{3}\left\langle \right\rangle \right\rangle \\ \left\langle \begin{array}{c} \left\rangle \right\rangle \right\rangle = -A^{-3}\left\langle \right\rangle \right\rangle \\ \end{array}$$

Type II and Type III Reidemeister move

 $\langle D \rangle$ is invariant.

Kauffman bracket polynomial is NOT an invariant of oriented link.

Type I Reidemeister Move

$$\left\langle \begin{array}{c} \left\rangle \right\rangle \right\rangle = -A^{3} \left\langle \right\rangle \right\rangle \\ \left\langle \begin{array}{c} \left\rangle \right\rangle \right\rangle = -A^{-3} \left\langle \right\rangle \right\rangle$$

Type II and Type III Reidemeister move

 $\langle D \rangle$ is invariant.

Kauffman bracket polynomial is NOT an invariant of oriented link.

Definition: Writhe

The writhe w(D) of an oriented link D is the sum of the signs of the crossings of D.

Definition: Jones Polynomial V(L) of an oriented link L

D : any oriented diagram of L.

$$V(L) = \left((-A)^{-3w(D)} \langle D \rangle\right)_{t^{\frac{1}{2}} = A^{-2}} \in \mathbb{Z}[t^{-\frac{1}{2}}, t^{\frac{1}{2}}].$$

Jones polynomial is an invariant of oriented links.

Definition: Writhe

The writhe w(D) of an oriented link D is the sum of the signs of the crossings of D.

Definition: Jones Polynomial V(L) of an oriented link L

D: any oriented diagram of L.

$$V(L) = \left((-A)^{-3w(D)} \langle D
angle
ight)_{t^{rac{1}{2}} = A^{-2}} \in \mathbb{Z}[t^{-rac{1}{2}}, t^{rac{1}{2}}].$$

Jones polynomial is an invariant of oriented links.

Zhen Huan (HUST)

Knot theory: an introduction

USTC, December 25, 2019 28 / 40

Definition: Writhe

The writhe w(D) of an oriented link D is the sum of the signs of the crossings of D.

Definition: Jones Polynomial V(L) of an oriented link L

D: any oriented diagram of L.

$$V(L) = \left((-A)^{-3w(D)} \langle D \rangle \right)_{t^{\frac{1}{2}} = A^{-2}} \in \mathbb{Z}[t^{-\frac{1}{2}}, t^{\frac{1}{2}}].$$

Jones polynomial is an invariant of oriented links.

The Jones polynomial invariant is a function

$$V: \{ \mathsf{Oriented \ links \ in \ } S^3 \} \longrightarrow \mathbb{Z}[t^{-rac{1}{2}},t^{rac{1}{2}}]$$

such that

- U(unknot) = 1.
- 2 whenever the three oriented links L_+ , L_- and L_0 are the same, except in the neighbourhood of a point where they are as shown in the picture, then we have the skein relation

$$t^{-1}V(L_+) - tV(L_-) + (t^{-rac{1}{2}} - t^{rac{1}{2}})V(L_0) = 0.$$

Jones Polynomial Table

TABLE 3.1. Jones Polynomial Table

								_		_	_
31	-1	1	0	1	0						
41	1	-1	1	-1	1						
51	-1	1	-1	1	0	1	0	0			
5.	-1	1	-1	2	-1	1	0				
6.	1	-1	1	-2	2	-1	1				
6.	1	-2	2	-2	2	-1	1				
63	-1	2	-2	3	-2	2	-1				
7,	-1	1	-1	1	-1	1	0	1	0	0	0
72	-1	1	-1	2	-2	2	-1	1	0		
73	0	0	1	-1	2	-2	3	-2	1	-1	
74	0	1	-2	3	-2	3	-2	1	-1		
75	-1	2	-3	3	-3	3	-1	1	0	0	
76	-1	2	-3	4	-3	3	-2	1			
77	-1	3	-3	4	-4	3	-2	1			
81	1	-1	1	-2	2	-2	2	-1	1		
82	1	-2	2	-3	3	-2	2	-1	1		
83	1	-1	2	-3	3	-3	2	-1	1		
84	1	-2	3	-3	3	-3	2	-1	1		
84	1	-1	3	-3	3	-4	3	-2	1		
86	1	-2	3	-4	4	-4	3	-1	1		
87	-1	2	-2	4	-4	4	-3	2	-1		
88	-1	2	-3	5	-4	4	-3	2	-1		
89	1	-2	3	-4	5	-4	3	-2	1		
810	-1	2	-3	5	-4	5	-4	2	-1		
811	1	-2	3	-5	5	-4	4	-2	1		
812	1	-2	4	-5	5	-5	4	-2	1		
813	-1	2	-3	5	-5	5	-4	3	-1		
814	1	-3	4	-5	6	-5	4	-2	1		
815	1	-3	4	-6	6	-5	5	-2	1	0	0
816	-1	3	-5	6	-6	6	-4	3	-1		
817	1	-3	5	-6	7	-6	5	-3	1		
818	1	-4	6	-7	9	-7	6	-4	1		
819	0	0	0	1	0	1	0	0	-1		
820	-1	1	-1	2	-1	2	-1				
821	1	-2	2	-3	3	-2	2	0			

• oriented link \Rightarrow a Laurent polynomial with integer coefficients.

- an invariant of oriented link
- Alexander polynomial and Jones polynomial give different information of the geometric properties of knots and links.
- Alexander polynomial has longer history than Jones polynomial.
- the construction of Alexander polynomial is based on elementary homology theory.

• oriented link \Rightarrow a Laurent polynomial with integer coefficients.

• an invariant of oriented link

- Alexander polynomial and Jones polynomial give different information of the geometric properties of knots and links.
- Alexander polynomial has longer history than Jones polynomial.
- the construction of Alexander polynomial is based on elementary homology theory.

- oriented link \Rightarrow a Laurent polynomial with integer coefficients.
- an invariant of oriented link
- Alexander polynomial and Jones polynomial give different information of the geometric properties of knots and links.
- Alexander polynomial has longer history than Jones polynomial.
- the construction of Alexander polynomial is based on elementary homology theory.

- oriented link \Rightarrow a Laurent polynomial with integer coefficients.
- an invariant of oriented link
- Alexander polynomial and Jones polynomial give different information of the geometric properties of knots and links.
- Alexander polynomial has longer history than Jones polynomial.
- the construction of Alexander polynomial is based on elementary homology theory.

- oriented link \Rightarrow a Laurent polynomial with integer coefficients.
- an invariant of oriented link
- Alexander polynomial and Jones polynomial give different information of the geometric properties of knots and links.
- Alexander polynomial has longer history than Jones polynomial.
- the construction of Alexander polynomial is based on elementary homology theory.

- X: the infinite cyclic cover of the complement of L in S^3 .
- Covering transformation acting on X.
- *H*₁(*X*): a ℤ[*t*, *t*⁻¹]-module.
 It is called Alexander module.
- the Alexander ideal: an annihilator ideal of the Alexander module. It is always principal.
- Alexander polynomial: a generator of the Alexander ideal.

• $\Delta_K(1) = \pm 1.$

- $\Delta_L(t) = \Delta_L(t^{-1})$ up to multiplication by units;
- $\Delta_L(t)$, $\Delta_{mL}(t)$, $\Delta_{rL}(t)$ are equal up to multiplication by units;
- $\Delta_K(t)$ is of the form up to multiplication by units

$$a_0 + a_1(t^{-1} + t) + a_2(t^2 + t^{-2}) + \cdots$$

• $\Delta_{\mathcal{K}}(1) = \pm 1.$

- $\Delta_L(t) = \Delta_L(t^{-1})$ up to multiplication by units;
- $\Delta_L(t)$, $\Delta_{mL}(t)$, $\Delta_{rL}(t)$ are equal up to multiplication by units;
- $\Delta_K(t)$ is of the form up to multiplication by units

$$a_0 + a_1(t^{-1} + t) + a_2(t^2 + t^{-2}) + \cdots$$

• $\Delta_{\mathcal{K}}(1) = \pm 1.$

- $\Delta_L(t) = \Delta_L(t^{-1})$ up to multiplication by units;
- $\Delta_L(t)$, $\Delta_{mL}(t)$, $\Delta_{rL}(t)$ are equal up to multiplication by units;
- $\Delta_K(t)$ is of the form up to multiplication by units

$$a_0 + a_1(t^{-1} + t) + a_2(t^2 + t^{-2}) + \cdots$$

• $\Delta_{\mathcal{K}}(1) = \pm 1.$

- $\Delta_L(t) = \Delta_L(t^{-1})$ up to multiplication by units;
- $\Delta_L(t)$, $\Delta_{mL}(t)$, $\Delta_{rL}(t)$ are equal up to multiplication by units;

• $\Delta_{K}(t)$ is of the form up to multiplication by units

 $a_0 + a_1(t^{-1} + t) + a_2(t^2 + t^{-2}) + \cdots$

•
$$\Delta_{\mathcal{K}}(1) = \pm 1.$$

- $\Delta_L(t) = \Delta_L(t^{-1})$ up to multiplication by units;
- $\Delta_L(t)$, $\Delta_{mL}(t)$, $\Delta_{rL}(t)$ are equal up to multiplication by units;
- $\Delta_{\mathcal{K}}(t)$ is of the form up to multiplication by units

$$a_0 + a_1(t^{-1} + t) + a_2(t^2 + t^{-2}) + \cdots$$

- Start from a link diagram of the oriented link L;
- 2 Polynomial colouring equations: a + tc ta b = 0

- Sor each crossing, get an equation. P₊ :=matrix of coefficients.
- Delete one row and one column of P₊.
 P := the resulting matrix.
- **5** The Alexander polynomial $\Delta_L(t) := \det(P)$.

- Start from a link diagram of the oriented link L;
- 2 Polynomial colouring equations: a + tc ta b = 0

- Sor each crossing, get an equation. P₊ :=matrix of coefficients.
- Delete one row and one column of P₊.
 P := the resulting matrix.
- **5** The Alexander polynomial $\Delta_L(t) := \det(P)$.

- Start from a link diagram of the oriented link L;
- 2 Polynomial colouring equations: a + tc ta b = 0

- For each crossing, get an equation.
 P₊ :=matrix of coefficients.
- Oelete one row and one column of P₊. P := the resulting matrix.
- **(5)** The Alexander polynomial $\Delta_L(t) := \det(P)$.

- Start from a link diagram of the oriented link L;
- 2 Polynomial colouring equations: a + tc ta b = 0

- For each crossing, get an equation.
 P₊ :=matrix of coefficients.
- Delete one row and one column of P₊.
 P := the resulting matrix.
- **5** The Alexander polynomial $\Delta_L(t) := \det(P)$.

- Start from a link diagram of the oriented link L;
- 2 Polynomial colouring equations: a + tc ta b = 0

- For each crossing, get an equation.
 P₊ :=matrix of coefficients.
- Delete one row and one column of P₊.
 P := the resulting matrix.
- **(3)** The Alexander polynomial $\Delta_L(t) := \det(P)$.

Alexander Polynomial Table

Knot	ao	<i>a</i> 1	a2	ay
31	-1	1		
41	3	-1		
51	1	-1	1	
5,	-3	2		
61	5	-2		
6,	-3	3	-1	
63	5	-3	1	
71	-1	1	-1	1
72	-5	3		
73	3	-3	2	
74	-7	4		
75	5	-4	2	
76	-7	5	-1	
77	9	-5	1	
81	7	-3		
82	3	-3	3	-1
83	9	-4		
84	-5	5	-2	
8.	5	-4	3	-1
86	-7	6	-2	
87	-5	5	-3	
88	9	-6	2	
89	7	-5	3	-
810	-7	6	-3	
811	-9	7	-2	
812	13	-7	1	
813	11	-7	2	
814	-11	8	-2	
815	11	-8	3	
816	-9	8	-4	
817	11	-8	4	1
818	13	-10	5	-
819	1	0	-1	
820	3	-2	1	
821	-5	4	-1	

Zhen Huan (HUST)

Knot theory: an introduction

USTC, December 25, 2019 35 / 40

There is Topology in Chinese Gene!

Western words \sim Permutations and Combinations \sim Algebra

gior a mon try nona tm gior a mon ams thip ocs am ad tria patrix: gioragi taqing milia fordin quiqua guita. Or films unta y genea nones t familias ac comos cognanonii fuar y noniia funquior a victimo ano e

Chinese Character \sim Drawing \sim Topology

Zhen Huan (HUST)

Knot theory: an introduction
There is Topology in Chinese Gene!

Calligraphy: How can you recognize those words?

Θ D 揚 5 卫

Homeomorphisms! Homotopy! Equivalences in Topology!

Zhen Huan (HUST)

いる明文

Knot theory: an introduction

匪蒙

周

甲

館胃

野町町の

There is Topology in Chinese Gene!

Calligraphy: How can you recognize those words?

D 57 卫 影がたいます 一两項 匪 周 蒙 田町 館

Homeomorphisms! Homotopy! Equivalences in Topology!

Zhen Huan (HUST)

Knot theory: an introduction

37 / 40

There is Topology in Chinese Gene!

Classical Western painting: Present Nature directly in Detail

Classical Chinese painting: Interpret Nature Topologically

Zhen Huan (HUST)

Knot theory: an introduction

USTC, December 25, 2019 38 / 40

Thank you.

https://huanzhen84.github.io/zhenhuan/HUAN-USTC-2019-KNOTS-Slides.pdf

- Alexander, J. W. (1928). "Topological invariants of knots and links". Transactions of the American Mathematical Society. 30 (2): 275C306.
- Adams, Colin (2000-12-06). The Knot Book. American Mathematical Society.
- Crowell, Richard H.; Fox, Ralph (1977). Introduction to Knot Theory.
- Jones, Vaughan (1987). "Hecke algebra representations of braid groups and link polynomials". Annals of Mathematics.
- Kauffman, Louis H. (1987), On Knots,
- Kauffman, Louis H. (1987). "State models and the Jones polynomial". Topology. 26 (3): 395C407.
- Kauffman, Louis H. (2013), Knots and Physics (4th ed.).
- Lickorish, W. B. Raymond (1997). An introduction to knot theory. New York; Berlin; Heidelberg; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer.
- Rolfsen, Dale (1990). Knots and Links (2nd ed.). Berkeley, CA: Publish or Perish.