Almost Global Homotopy Theory

Zhen Huan

Sun Yat-sen University

October 10, 2018

- Preliminary: classical homotopy theory.
- Model category;
- Equivariant homotopy theory;
- Global homotopy theory;
- Almost global homotopy theory;
- Examples: Quasi-theories.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

W-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)—cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

W-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)-cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*

homotopy equivalence \Rightarrow weak homotopy equivalence.

W-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)-cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

W-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)—cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

M-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)—cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)-cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

• Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach (n+1)-cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting **Property**, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p:E\longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X=D^n$

$p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p:E\longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X=D^n$

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p:E\longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X=D^n$

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0, 1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0, 1] \longrightarrow E$ making the diagram commute.

$$X \times \{0\} \xrightarrow{f} E$$

$$\downarrow_{i_0} \xrightarrow{\overline{h}} \qquad \downarrow_{p}$$

$$X \times [0,1] \xrightarrow{h} B$$

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p: E \longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X = D^n$

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0, 1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0, 1] \longrightarrow E$ making the diagram commute.

$$X \times \{0\} \xrightarrow{f} E$$

$$\downarrow_{i_0} \xrightarrow{\overline{h}} \qquad \downarrow_{p}$$

$$X \times [0,1] \xrightarrow{h} B$$

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p:E\longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X=D^n$

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$X \times \{0\} \xrightarrow{f} E$$

$$\downarrow_{i_0} \xrightarrow{\overline{h}} \qquad \downarrow_{p}$$

$$X \times [0,1] \xrightarrow{h} B$$

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p:E\longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X=D^n$

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$X \times \{0\} \xrightarrow{f} E$$

$$\downarrow_{i_0} \xrightarrow{\overline{h}} \qquad \downarrow_{p}$$

$$X \times [0,1] \xrightarrow{h} B$$

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p: E \longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X = D^n$

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$X \times \{0\} \xrightarrow{f} E$$

$$\downarrow_{i_0} \xrightarrow{\overline{h}} \qquad \downarrow_{p}$$

$$X \times [0,1] \xrightarrow{h} B$$

Example

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $p: E \longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X = D^n$.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\emptyset \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0, 1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f: A \longrightarrow X$, homotopy $h: A \times [0,1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

• Weak Equivalence • Fibration • Cofibration.

- 2-out-of-3: If two of f, g, gf are weak equivalences, so is the third.
- **Retracts**: $A \xrightarrow{ia} B \xrightarrow{r} A$ *f* is a retract of *g*. $f \downarrow f \downarrow g \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

If g is a weak equivalence/fibration/cofibration, then so is f.

• Lifting: $A \xrightarrow{f} X$ $i \downarrow \xrightarrow{h} \downarrow^{p}$ $B \xrightarrow{q} Y$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• **Factorization**: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow$ Map (\mathcal{C}) .

 $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration, $\delta(f)$ is a fibration.

- Weak Equivalence Fibration Cofibration.
 - 2-out-of-3: If two of f, g, gf are weak equivalences, so is the third.

If g is a weak equivalence/fibration/cofibration, then so is f.

• Lifting: $A \xrightarrow{f} X$ $i \downarrow \xrightarrow{h} \downarrow^{p}$ $B \xrightarrow{\sigma} Y$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• **Factorization**: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow$ Map (\mathcal{C}) .

 $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration, $\delta(f)$ is a fibration.

- Weak Equivalence Fibration Cofibration.
 - 2-out-of-3: If two of f, g, gf are weak equivalences, so is the third.
 - - If g is a weak equivalence/fibration/cofibration, then so is f.
 - Lifting: $A \xrightarrow{f} X$ $i \downarrow \xrightarrow{h} \downarrow^{p}$ $B \xrightarrow{r} Y$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• **Factorization**: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow$ Map (\mathcal{C}) .

 $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration, $\delta(f)$ is a fibration.

- Weak Equivalence Fibration Cofibration.
 - 2-out-of-3: If two of f, g, gf are weak equivalences, so is the third.

If g is a weak equivalence/fibration/cofibration, then so is f.

• Lifting: $A \xrightarrow{f} X$ $i \bigvee A \xrightarrow{f} X$ $i \bigvee B \xrightarrow{f} Y$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

Factorization: (α, β), (γ, δ): Map(C) → Map(C).
 f = β(f) ∘ α(f); f = δ(f) ∘ γ(f). α(f) is a cofibration, β(f) is

- Weak Equivalence Fibration Cofibration.
 - 2-out-of-3: If two of f, g, gf are weak equivalences, so is the third.

If g is a weak equivalence/fibration/cofibration, then so is f.

• Lifting: $A \xrightarrow{f} X$ $i \downarrow \qquad h \qquad \downarrow p$ $B \xrightarrow{g} Y$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

Factorization: (α, β), (γ, δ): Map(C) → Map(C).
 f = β(f) ∘ α(f); f = δ(f) ∘ γ(f). α(f) is a cofibration, β(f) is a trivial fibration, γ(f) is a trivial cofibration, δ(f) is a fibration.

Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.
- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \sim Top[hoequiv]^{-1}$.

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \sim Top[hoequiv]^{-1}$.

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. Ho(Top) \sim Top[hoequiv]⁻¹.

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- fibration
- closed cofibration

Ho(Top): the associated homotopy category

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \sim Top[hoequiv]^{-1}.$

Homotopy Category $Ho(\mathcal{C})$

 \mathcal{C} : a category. \mathcal{W} : a subcategory of weak equivalences.

The free category ${\it F}({\cal C},{\cal W}^{-1})$

• same objects as C;

morphism: a finite string of composable arrows (f₁, f₂, · · · f_n) where f_i is

- $\bullet\,$ either a morphism in ${\cal C}$
- or w^{-1} , $w \in \mathcal{W}$.

$$\mathsf{Ho}(\mathcal{C}) := \mathsf{F}(\mathcal{C}, \mathcal{W}^{-1}) / \langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{\leftarrow}{L} \mathcal{D}.$

Quillen equivalence: $Ho(\mathcal{C}) \xrightarrow[\pi]{\mathbb{R}} Ho(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $\mathcal{C}:$ a category. $\mathcal{W}:$ a subcategory of weak equivalences.

The free category ${\it F}({\cal C},{\cal W}^{-1})$

• same objects as C;

morphism: a finite string of composable arrows (f₁, f₂, · · · f_n) where f_i is

- $\bullet\,$ either a morphism in ${\cal C}$
- or w^{-1} , $w \in \mathcal{W}$.

```
\mathsf{Ho}(\mathcal{C}) := \mathsf{F}(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle
```

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{\leftarrow}{} \mathcal{D}.$

Quillen equivalence: $Ho(\mathcal{C}) \xrightarrow[\pi]{\mathbb{K}} Ho(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $\mathcal{C}:$ a category. $\mathcal{W}:$ a subcategory of weak equivalences.

The free category $F(\mathcal{C}, \mathcal{W}^{-1})$

- same objects as C;
- morphism: a finite string of composable arrows (f₁, f₂, ... f_n) where f_i is
 - ${\scriptstyle \bullet} \,$ either a morphism in ${\cal C}$
 - or w^{-1} , $w \in \mathcal{W}$.

$\mathsf{Ho}(\mathcal{C}) := \mathsf{F}(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{\leftarrow} \mathcal{D}.$

Quillen equivalence: $Ho(\mathcal{C}) \xrightarrow[\pi]{\mathbb{K}} Ho(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $\mathcal{C}:$ a category. $\mathcal{W}:$ a subcategory of weak equivalences.

The free category $F(\mathcal{C}, \mathcal{W}^{-1})$

- same objects as C;
- morphism: a finite string of composable arrows (f₁, f₂, ... f_n) where f_i is
 - $\bullet\,$ either a morphism in ${\cal C}$
 - or w^{-1} , $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : C \xrightarrow{\leftarrow}_{I} D.$

Quillen equivalence: $Ho(\mathcal{C}) \xrightarrow[\pi]{\mathbb{K}} Ho(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $\mathcal{C}:$ a category. $\mathcal{W}:$ a subcategory of weak equivalences.

The free category $F(\mathcal{C}, \mathcal{W}^{-1})$

- same objects as C;
- morphism: a finite string of composable arrows $(f_1, f_2, \cdots f_n)$ where f_i is
 - $\bullet\,$ either a morphism in ${\cal C}$

• or
$$w^{-1}$$
, $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{\mathcal{R}}_{I} \mathcal{D}.$

Quillen equivalence: $Ho(\mathcal{C}) \xrightarrow{\overset{\mathbb{R}}{\to}} Ho(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $\mathcal{C}:$ a category. $\mathcal{W}:$ a subcategory of weak equivalences.

The free category $F(\mathcal{C}, \mathcal{W}^{-1})$

- same objects as C;
- morphism: a finite string of composable arrows $(f_1, f_2, \cdots f_n)$ where f_i is
 - $\bullet\,$ either a morphism in ${\cal C}$

• or
$$w^{-1}$$
, $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction:
$$(L \dashv R) : C \stackrel{\kappa}{\xrightarrow{}} D.$$

Quillen equivalence:
$$Ho(\mathcal{C}) \xrightarrow{\mathbb{R}}_{\mathbb{T}} Ho(\mathcal{D}).$$

G-CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

 $egin{aligned} GTop \longrightarrow [Orb^{op}_G, Top] \ X \mapsto (G/H \mapsto X^H) \end{aligned}$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

We have the equivalence of the homotopy categories

Zhen Huan (SYSU)

G-CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

 $GTop \longrightarrow [Orb_{G}^{op}, Top]$ $X \mapsto (G/H \mapsto X^{H})$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

We have the equivalence of the homotopy categories

Zhen Huan (SYSU)

G-CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

 $GTop \longrightarrow [Orb_{G}^{op}, Top]$ $X \mapsto (G/H \mapsto X^{H})$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

We have the equivalence of the homotopy categories

Zhen Huan (SYSU)

G-CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

$$egin{aligned} { extsf{GTop}} &\longrightarrow [{ extsf{Orb}}_G^{op}, { extsf{Top}}] \ X &\mapsto ({ extsf{G}}/{ extsf{H}} \mapsto X^{ extsf{H}}) \end{aligned}$$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

We have the equivalence of the homotopy categories

$$Ho(GTop) \xrightarrow{\simeq} Ho([Orb_G^{op}, Top]).$$

Zhen Huan (SYSU)

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best features of other models.

- Coordinate-free.
- Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best features of other models.

• Coordinate-free.

• Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best features of other models.

• Coordinate-free.

• Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best features of other models.

- Coordinate-free.
- Their weak equivalence implies isomorphism of homotopy groups.

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_{G} —space

A *G*-continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G-spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \land S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal G-spectrum $\pi_a^H(X)$

$$\pi_q^H(X) = \operatorname{colim}_V \pi_q^H(\Omega^V X(V)) \text{ if } q \ge 0,$$

 $\pi_{-q}^H(X) = \operatorname{colim}_{V \supset \mathbb{R}^q} \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \text{ if } q > 0.$

The weak equivalence of interest: the π_*- isomorphism

 $f: X \longrightarrow Y$: induces isomorphisms on all homotopy groups.

Zhen Huan (SYSU)

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_{G} -space

A *G*-continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal *G*-spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \land S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal G-spectrum $\pi_a^H(X)$

$$\pi_q^H(X) = \operatorname{colim}_V \pi_q^H(\Omega^V X(V)) \text{ if } q \ge 0,$$

 $\pi_{-q}^H(X) = \operatorname{colim}_{V \supset \mathbb{R}^q} \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \text{ if } q > 0.$

The weak equivalence of interest: the π_*- isomorphism

 $f: X \longrightarrow Y$: induces isomorphisms on all homotopy groups.

Zhen Huan (SYSU)

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_{G} -space

A *G*-continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G-spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \land S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal G-spectrum $\pi_q^H(X)$

$$\pi_q^H(X) = \operatorname{colim}_V \pi_q^H(\Omega^V X(V)) ext{ if } q \ge 0,$$

 $\pi_{-q}^H(X) = \operatorname{colim}_{V \supset \mathbb{R}^q} \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) ext{ if } q > 0.$

The weak equivalence of interest: the π_*- isomorphism

 $f: X \longrightarrow Y$: induces isomorphisms on all homotopy groups.

Zhen Huan (SYSU)

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_{G} -space

A *G*-continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G-spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \land S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal G-spectrum $\pi_q^H(X)$

$$\pi_q^H(X) = \operatorname{colim}_V \pi_q^H(\Omega^V X(V)) \text{ if } q \ge 0,$$

 $\pi_{-q}^H(X) = \operatorname{colim}_{V \supset \mathbb{R}^q} \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \text{ if } q > 0.$

The weak equivalence of interest: the π_*- isomorphism

 $F: X \longrightarrow Y$: induces isomorphisms on all homotopy groups.

Zhen Huan (SYSU)

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_{G} -space

A *G*-continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G-spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \land S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal G-spectrum $\pi_q^H(X)$

$$\pi_q^H(X) = \operatorname{colim}_V \pi_q^H(\Omega^V X(V)) \text{ if } q \ge 0,$$

 $\pi_{-q}^H(X) = \operatorname{colim}_{V \supset \mathbb{R}^q} \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \text{ if } q > 0.$

The weak equivalence of interest: the π_* -isomorphism

 $f: X \longrightarrow Y$: induces isomorphisms on all homotopy groups.

Zhen Huan (SYSU)

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\begin{split} & \mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X). \\ & \mathcal{K}^0_G(\mathsf{pt}) \cong RG. \mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}]. \end{split}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\begin{split} & \mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X). \\ & \mathcal{K}^0_G(\mathsf{pt}) \cong RG. \mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}]. \end{split}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\begin{split} & \mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X). \\ & \mathcal{K}^0_G(\mathsf{pt}) \cong RG. \mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt}) \cong \mathbb{Z}[\mathsf{x}^{\pm}]/\langle \mathsf{x}^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}] \end{split}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\begin{split} & \mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X). \\ & \mathcal{K}^0_G(\mathsf{pt}) \cong RG. \mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}]. \end{split}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\begin{split} & \mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X). \\ & \mathcal{K}^0_G(\mathsf{pt}) \cong RG. \mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}]. \end{split}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$egin{aligned} &\mathcal{K}^0_{\{e\}}(X)=\mathcal{K}^0(X).\ &\mathcal{K}^0_G(\mathsf{pt})\cong RG.\mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt})\cong \mathbb{Z}[x^{\pm}]/\langle x^n-1
angle.\ &\mathcal{K}^0_{\mathbb{T}}(\mathsf{pt})\cong \mathbb{Z}[q^{\pm}] \end{aligned}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \xrightarrow{\cong} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$egin{aligned} &\mathcal{K}^0_{\{e\}}(X)=\mathcal{K}^0(X).\ &\mathcal{K}^0_G(\mathsf{pt})\cong RG.\mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt})\cong \mathbb{Z}[x^{\pm}]/\langle x^n-1
angle.\ &\mathcal{K}^0_{\mathbb{T}}(\mathsf{pt})\cong \mathbb{Z}[q^{\pm}] \end{aligned}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K^0_G(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$egin{aligned} &\mathcal{K}^0_{\{e\}}(X)=\mathcal{K}^0(X).\ &\mathcal{K}^0_G(\mathsf{pt})\cong RG.\mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt})\cong \mathbb{Z}[x^{\pm}]/\langle x^n-1
angle.\ &\mathcal{K}^0_{\mathbb{T}}(\mathsf{pt})\cong \mathbb{Z}[q^{\pm}] \end{aligned}$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

Schwede's global homotopy theory: a modern approach

The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category $\mathbb O$

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

Schwede's global homotopy theory: a modern approach

The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category $\mathbb O$

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

Schwede's global homotopy theory: a modern approach

The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category $\mathbb O$

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.
The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category $\mathbb O$

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

level model structure;

- strong level model structure;
- global model structure;

Homotopy groups of an orthogonal spectrum

$$\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).$$

A morphism $f : X \longrightarrow Y$ of orthogonal spectra is a **global** equivalence if $\pi_k^G(f) : \pi_k^G(X) \xrightarrow{\cong} \pi_k^G(Y)$ for all compact Lie groups G and all integers k.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).$$

A morphism $f : X \longrightarrow Y$ of orthogonal spectra is a **global** equivalence if $\pi_k^G(f) : \pi_k^G(X) \xrightarrow{\cong} \pi_k^G(Y)$ for all compact Lie groups G and all integers k.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).$$

A morphism $f : X \longrightarrow Y$ of orthogonal spectra is a **global** equivalence if $\pi_k^G(f) : \pi_k^G(X) \xrightarrow{\cong} \pi_k^G(Y)$ for all compact Lie groups G and all integers k.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in \mathfrak{s}(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).$$

A morphism $f : X \longrightarrow Y$ of orthogonal spectra is a **global** equivalence if $\pi_k^G(f) : \pi_k^G(X) \xrightarrow{\cong} \pi_k^G(Y)$ for all compact Lie groups G and all integers k.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in \mathfrak{s}(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(\Omega^k X) \text{ and } \pi_{-k}^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(S^k \wedge X).$$

A morphism $f : X \longrightarrow Y$ of orthogonal spectra is a **global** equivalence if $\pi_k^G(f) : \pi_k^G(X) \xrightarrow{\cong} \pi_k^G(Y)$ for all compact Lie groups G and all integers k.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in \mathfrak{s}(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(\Omega^k X) \text{ and } \pi_{-k}^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(S^k \wedge X).$$

A morphism $f : X \longrightarrow Y$ of orthogonal spectra is a global equivalence if $\pi_k^G(f) : \pi_k^G(X) \xrightarrow{\cong} \pi_k^G(Y)$ for all compact Lie groups G and all integers k.

Orthogonal spectra $\overbrace{\neg arise? - -}^{u \longrightarrow}$ Equivariant orthogonal spectra

• *u*: $X \mapsto X \langle G \rangle$ underlying orthogonal *G*-spectrum; $\pi_{\mathcal{L}}^{\mathcal{G}}(X) = \pi_{\mathcal{L}}^{\mathcal{G}}(X \langle G \rangle).$

arise: {X_G}_G with each X_G an orthogonal G-spectrum.
 yes iff for any trivial G-representation V, the G-action on X_G(V) is trivial.

Orthogonal spectra $\overbrace{\neg arise? - -}^{u \longrightarrow}$ Equivariant orthogonal spectra

• *u*: $X \mapsto X \langle G \rangle$ underlying orthogonal *G*-spectrum; $\pi_k^G(X) = \pi_k^G(X \langle G \rangle).$

arise: {X_G}_G with each X_G an orthogonal G-spectrum.
 yes iff for any trivial G-representation V, the G-action on X_G(V) is trivial.

Orthogonal spectra $\xrightarrow{u \longrightarrow}$ Equivariant orthogonal spectra

• u: $X \mapsto X \langle G \rangle$ underlying orthogonal *G*-spectrum; $\pi_k^G(X) = \pi_k^G(X \langle G \rangle).$

• arise: $\{X_G\}_G$ with each X_G an orthogonal G-spectrum. yes iff for any trivial G-representation V, the G-action on $X_G(V)$ is trivial.

equivalent to Schwede's global homotopy theory;easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

• equivalent to Schwede's global homotopy theory;

• easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category O;
- Quasi-theories can be globalized.

$QEII^*_G(X) = \prod_{g \in G^{tors}_{conj}} K^*_{\Lambda_G(g)}(X^g)$

QEll^{*}_G(X) ⊗_{ℤ[q[±]]} ℤ((q)) = (K^{*}_{Tate})_G(X);
Change-of-group isomorphism: QEll^{*}_G(G ×_H X) ≅ QEll^{*}_H(X).

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

October 10, 2018 17 / 24

$$QEII^*_G(X) = \prod_{g \in G^{tors}_{conj}} K^*_{\Lambda_G(g)}(X^g)$$

•
$$QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K^*_{Tate})_G(X);$$

• Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEII_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

$${\it QEII}^*_G(X) = \prod_{g \in G^{tors}_{conj}} K^*_{\Lambda_G(g)}(X^g)$$

- $QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K^*_{Tate})_G(X);$
- Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

October 10, 2018 17 / 24

$$QEII^*_G(X) = \prod_{g \in G^{tors}_{conj}} K^*_{\Lambda_G(g)}(X^g)$$

•
$$QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^*)_G(X);$$

• Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEII_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

$$\mathit{QEII}^*_{G}(X) = \prod_{g \in G^{tors}_{conj}} K^*_{\Lambda_{G}(g)}(X^g)$$

•
$$QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K^*_{Tate})_G(X);$$

• Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

• Jacob Lurie: Elliptic cohomology theories can be globalized.

- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

$${\it QEII}^*_G(X) = \prod_{g \in G^{tors}_{conj}} K^*_{\Lambda_G(g)}(X^g)$$

•
$$QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K^*_{Tate})_G(X);$$

• Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEII_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

$$\operatorname{QEII}^*_G(X) = \prod_{g \in G^{\operatorname{tors}}_{\operatorname{conj}}} K^*_{\Lambda_G(g)}(X^g)$$

•
$$QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K^*_{Tate})_G(X);$$

• Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEII_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

$$\operatorname{QEII}^*_G(X) = \prod_{g \in G^{\operatorname{tors}}_{\operatorname{conj}}} K^*_{\Lambda_G(g)}(X^g)$$

•
$$QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K^*_{Tate})_G(X);$$

• Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEII_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

Zhen Huan (SYSU)

Almost Global Homotopy Theory

17 / 24

[Huan]

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any *G*-representation *V*.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: φ = (φ₁, φ₂) : (G, V) → (H, W) with φ₂ : V → W a linear isometric embedding and φ₁ : H ∩ O(V) → G a group homomorphism.

[Huan]

Observation: restriction maps don't need to be identity maps.

• $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.

• For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any *G*-representation *V*.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: φ = (φ₁, φ₂) : (G, V) → (H, W) with φ₂ : V → W a linear isometric embedding and φ₁ : H ∩ O(V) → G a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: φ = (φ₁, φ₂) : (G, V) → (H, W) with φ₂ : V → W a linear isometric embedding and φ₁ : H ∩ O(V) → G a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: φ = (φ₁, φ₂) : (G, V) → (H, W) with φ₂ : V → W a linear isometric embedding and φ₁ : H ∩ O(V) → G a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

• objects: (G, V) with $G \leq O(V)$ finite

morphisms: φ = (φ₁, φ₂) : (G, V) → (H, W) with φ₂ : V → W a linear isometric embedding and φ₁ : H ∩ O(V) → G a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

Н

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: φ = (φ₁, φ₂) : (G, V) → (H, W) with φ₂ : V → W a linear isometric embedding and φ₁ : H ∩ O(V) → G a group homomorphism.

Huan
• D_0 is a symmetric monoidal category.

• D_0 is a generalized Reedy category in Berger and Moerdijk's sense.

- linear isometric embedding: raising degree;
- restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

• D_0 is a symmetric monoidal category.

• D₀ is a generalized Reedy category in Berger and Moerdijk's sense.

- linear isometric embedding: raising degree;
- restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

• D₀ is a symmetric monoidal category.

• D_0 is a generalized Reedy category in Berger and Moerdijk's sense.

- linear isometric embedding: raising degree;
- restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and \overline{D}_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A *D*₀—spectrum *X* consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map
 - $\sigma_{(G,V),(H,W)}: S^{W} \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based *G*-space *X*(*G*, *V*);
 - a $G \times H$ -equivariant based structure map
 - $\sigma_{(G,V),(H,W)}: S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based G-space X(G, V);
 - a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based G-space X(G, V);

• a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

[Huar

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 -spectrum X consists of
 - a based G-space X(G, V);

• a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H, V \oplus W)$

A morphism of D_0 -spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

[Huar

the full subcategory of D_0T consisting of those objects $X : D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftrightarrow}} Sp^{D_0}_W$$

The Reedy model structure on Sp^{D0}_W is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
The global model structure on Sp^{D0}_W is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the full subcategory of D_0T consisting of those objects $X : D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftrightarrow}} Sp^{D_0}_W$$

The Reedy model structure on Sp^{D0}_W is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
The global model structure on Sp^{D0}_W is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftrightarrow}} Sp^{D_0}_W$$

The Reedy model structure on Sp^{D0}_W is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
The global model structure on Sp^{D0}_W is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftrightarrow}} Sp^{D_0}_W$$

The Reedy model structure on Sp^{D0}_W is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
The global model structure on Sp^{D0}_W is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftarrow}} Sp^{D_0}_W$$

• The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.

• The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftarrow}} Sp^{D_0}_W$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\leftarrow}} Sp^{D_0}_W$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Zhen Huan (SYSU)

the generalized Tate K-theory and generalized quasi-elliptic cohomology

 $0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}^n} \mathbb{Q}^n)[p^k]) = K^0_{n, Tate}(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$\mathcal{Q}\mathcal{K}^*_{n,G}(X) := \mathcal{K}^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} \mathcal{K}^*_{\Lambda^n_G(\sigma)}(X^{\sigma}).$$

 $K^*_{n, Tate_G}(X) \cong QK^*_{n, G}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}^n} \mathbb{Q}^n)[p^k]) = K^0_{n, Tate}(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$\mathcal{D}K^*_{n,G}(X) := K^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in \mathcal{G}_z^n} K^*_{\Lambda^n_G(\sigma)}(X^{\sigma}).$$

 $\mathcal{K}^*_{n, Tate_G}(X) \cong \mathcal{Q}\mathcal{K}^*_{n, G}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}^n} \mathbb{Q}^n)[p^k]) = K^0_{n, Tate}(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$QK^*_{n,G}(X) := K^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_2^n} K^*_{\Lambda^n_G(\sigma)}(X^{\sigma}).$$

 ${\mathcal K}^*_{n,\operatorname{Tate} G}(X)\cong {\mathcal Q}{\mathcal K}^*_{n,G}(X)\otimes_{{\mathbb Z}[q^\pm]^{\otimes n}}{\mathbb Z}((q))^{\otimes n}.$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}^n} \mathbb{Q}^n)[p^k]) = K^0_{n,Tate}(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$QK^*_{n,G}(X) := K^*(\Lambda^n(X/\!\!/G)) \cong \prod_{\sigma \in G^n_z} K^*_{\Lambda^n_G(\sigma)}(X^{\sigma}).$$

$$\mathcal{K}^*_{n, \mathit{Tate}_{G}}(X) \cong \mathcal{Q}\mathcal{K}^*_{n, G}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}^n} \mathbb{Q}^n)[p^k]) = K^0_{n,Tate}(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$QK^*_{n,G}(X) := K^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G^n_z} K^*_{\Lambda^n_G(\sigma)}(X^{\sigma}).$$

$$\mathcal{K}^*_{n, \mathit{Tate}_{G}}(X) \cong \mathcal{Q}\mathcal{K}^*_{n, G}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

[Zhen Huan: Quasi-theories, 2018]

Zhen Huan (SYSU)

Theorem

If the theory $\{E_G^*(-)\}_G$ can be globalized, there is a D_0^W -spectrum representing the quasi-theory $\{QE_{n,G}^*(-)\}_G$. In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: *Quasi-elliptic cohomology*, PhD thesis] [Zhen Huan: *Quasi-elliptic cohomology and its Spectrum*, 2017] [Zhen Huan: *Quasi-theories and their equivariant orthogonal spectra*, 2018] [Zhen Huan: *Almost global homotopy theory*, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Huan

Theorem

If the theory $\{E_G^*(-)\}_G$ can be globalized, there is a D_0^W -spectrum representing the quasi-theory $\{QE_{n,G}^*(-)\}_G$. In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis]
[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]
[Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018]
[Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Huan

Theorem

If the theory $\{E_G^*(-)\}_G$ can be globalized, there is a D_0^W -spectrum representing the quasi-theory $\{QE_{n,G}^*(-)\}_G$. In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis]
[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]
[Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018]
[Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Huan

Thank you.

https://huanzhen84.github.io/zhenhuan/Huan-Fudan-2018.pdf

- Ando, Hopkins, Strickland: "Elliptic spectra, the Witten genus and the theorem of the cube". Invent. Math., 146(3):595–687, 2001.
- Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004;
- Atiyah, "Power operations in K-theory", Quart. J. Math. Oxford Ser. (2) 17 1966.
- Atiyah," Equivariant K-theory and completion", J. Differential Geometry 3 1969.
- Berger, Moerdijk, "On an extension of the notion of Reedy category", Mathematische Zeitschrift, December 2011.
- Bohmann, "Global orthogonal spectra", Homology, Homotopy and Applications. Vol 16 (2014), No 1, 313–332.
- Gepner, "Homotopy Topoi and Equivariant Elliptic Cohomology", Thesis (Ph.D.)University of Illinois at Urbana-Champaign. 1999.
- Gepner, Henriques, "Homotopy Theory of Orbispaces", available at arXiv:math/0701916.
- Ginzburg, Kapranov, Vasserot, "Elliptic algebras and equivariant elliptic cohomology I", available at arXiv:q-alg/9505012.
- Greenlees, May, "Localization and completion theorems for MU- module spectra", Ann. of Math. (2), 146(3) (1997), 509–544.
- Katz, Mazur, "Arithmetic moduli of elliptic curves", Annals of Mathematics Studies, vol. 108, 1985.
- Lurie, "A Survey of Elliptic Cohomology", in Algebraic Topology Abel Symposia Volume 4, 2009, pp 219–277.
- Mandell, May, "Equivariant orthogonal spectra and S-modules", Mem., Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.
- Mandell, May, Schwede, Shipley, "Model categories of diagram spectra", Proc. London Math. Soc. 82(2001).
- May, "Equivariant homotopy and cohomology theory", CBMS Regional Conference Series in Mathematics, vol. 91, 1996.
- Rezk, "Quasi-elliptic cohomology", 2011.
- Schwede, "Global Homotopy Theory", global.pdf.