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What is ”homotopy theory”?

Motivating example: the category of topological spaces:

What are its key features?

What are its key components?

weak homotopy equivalence

f : X −→ Y is a weak homotopy equivalence if
f∗ : πn(X , x) −→ πn(Y , f (x)) is an isomorphism for each n and each x .

homotopy equivalence ⇒ weak homotopy equivalence.

CW-complex: nice spaces

X 0: a discrete set.
X n+1: attach (n + 1)−cells Dn+1 to X n along attaching maps Sn −→ X n.

• Any Hausdorff topological space is weak homotopy equivalent to a
CW-complex.
• Weak homotopy equivalences between connected CW-complexes are
homotopy equivalences.
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Fibration

p : E −→ B is called a fibration if it satisfies the Homotopy Lifting
Property, i.e. given any map f : X −→ E and homotopy
h : X × [0, 1] −→ B with h0 = p ◦ f , there exists an extension
h : X × [0, 1] −→ E making the diagram commute.

X × {0} f //

i0
��

E

p

��
X × [0, 1]

h
//

h

;;

B

Example

constant map; covering space; fiber bundle.

composition; pullback; product; retract; sequential inverse limits.

Serre fibration

p : E −→ B satisfying the Homotopy Lifting Property w.r.t X = Dn.
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Cofibrations: dual to fibration

i : A −→ X is called a cofibration if i : A −→ X satisfies the Homotopy
Extension Property, i.e. if given any map f : A −→ X , homotopy
h : A× [0, 1] −→ Y with h0 = f ◦ i , there exists an extension
h : X × [0, 1] −→ Y making the diagram commute.

A
h //

i
��

Y [0,1]

ev0

��
X

f
//

h

<<

Y

Example

The inclusions ∅ ↪→ X ; {0} ↪→ [0, 1]; Sn−1 ↪→ Dn;

composition; pushouts; coproducts; retracts; sequential colimits;

Inclusion of a subcomplex into a CW-complex;

Retract of a relative cell complex.
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Quillen’s perspective: Model Category

• Weak Equivalence • Fibration • Cofibration.

2-out-of-3: If two of f , g , gf are weak equivalences, so is the third.

Retracts: A

f
��

i
//
id

++B

g
��

r
// A

f
��

A′
i ′ //

id

33B ′
r ′ // A′

f is a retract of g .

If g is a weak equivalence/fibration/cofibration, then so is f .

Lifting: A

i
��

f // X

p
��

B

h

??

g
// Y

The trivial cofibrations have the left lifting property w.r.t. fibrations;
cofibrations have the left lifting property w.r.t. trivial fibrations.
Factorization: (α, β), (γ, δ): Map(C) −→Map(C).
f = β(f ) ◦ α(f ); f = δ(f ) ◦ γ(f ). α(f ) is a cofibration, β(f ) is a
trivial fibration, γ(f ) is a trivial cofibration, δ(f ) is a fibration.
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Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Structures on Topological Spaces

Classical Quillen Model Structure on Topological Spaces

weak homotopy equivalence

Serre fibration

retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

homotopy equivalence

fibration

closed cofibration

Ho(Top): the associated homotopy category

objects: topological spaces.

morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence.
Ho(Top) v Top[hoequiv]−1.

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 7 / 24



Morphisms in the Category of Model Categories

Homotopy Category Ho(C)

C: a category. W: a subcategory of weak equivalences.

The free category F (C,W−1)

same objects as C;

morphism: a finite string of composable arrows (f1, f2, · · · fn) where fi
is

either a morphism in C
or w−1, w ∈ W.

Ho(C) := F (C,W−1)/〈1 = (1), 1 = (w ,w−1), 1 = (w−1,w)〉

Morphisms C −→ D

Quillen adjunction: (L a R) : C
R←→
L
D.

Quillen equivalence: Ho(C)
R←→
L

Ho(D).
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Equivariant homotopy theory

G−CW complex

X 0: disjoint union of orbits G/H.
X n+1: attach G−cells G/H × Dn+1 to X n along attaching G−maps

G/H × Sn −→ X n.

Equivariant homotopy group

GTop −→ [OrbopG ,Top]

X 7→ (G/H 7→ XH)

πn(X )(G/H) = πn(XH).

Elmendorf’s theorem

We have the equivalence of the homotopy categories

Ho(GTop)
w−→ Ho([OrbopG ,Top]).
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Model Structures on Equivariant Stable Homotopy Theory

Right Philosophy for Stable Homotopy Theory (1990s) [MMSS]

S −Modules
Q.E .

Symmetric Spectra

Q.E .

Spectra

Orthogonal Spectra

Q.E .

Many Others

Q.E .

Zhen Huan (SYSU) Almost Global Homotopy Theory October 10, 2018 10 / 24



Model Structures on Equivariant Stable Homotopy Theory

Equivariant Stable Homotopy Theory (2000s) [MMSS]

SG −Modules
Q.E .

Orthogonal G-Spectra

Q.E .

G-Spectra
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Equivariant Stable Homotopy Theory (2000s) [MMSS]

SG −Modules
Q.E .

Orthogonal G-Spectra

Q.E .

G-Spectra

Which is the BEST model?

Orthogonal G−spectra.

Why BEST?

Combine the best features of other models.

Coordinate-free.

Their weak equivalence implies isomorphism of homotopy groups.
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Orthogonal G−spectrum [MMSS]

IG : the category of orthogonal representations of G .
TopG : the category of based G−spaces and continuous based maps.

IG−space

A G−continuous functor X : IG −→ TopG .

Orthogonal G−spectrum

An IG−space X with a natural transformation X (−) ∧ S− −→ X (−⊕−)
such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal G−spectrum πHq (X )

πHq (X ) = colimV πHq (ΩVX (V )) if q ≥ 0,

πH−q(X ) = colimV⊃Rq πH0 (ΩV−Rq
X (V )) if q > 0.

The weak equivalence of interest: the π∗−isomorphism

f : X −→ Y : induces isomorphisms on all homotopy groups.
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The birth of global homotopy theory

It has been noticed since the beginning of equivariant homotopy theory
that certain theories naturally exist not just for a particular group, but in a
uniform way for all groups in a specific class.

Example: equivariant K-theory

K 0
G (X ) : the Grothendieck group of the isomorphism classes of G−vector

bundles over the G−space X .

Example (When G varies)

K 0
{e}(X ) = K 0(X ).

K 0
G (pt) ∼= RG .K 0

Z/n(pt) ∼= Z[x±]/〈xn − 1〉. K 0
T(pt) ∼= Z[q±].

Relations between different equivariant K-theories

Restriction map: KG (X ) −→ KH(X );

Induced map: KH(X ) −→ KG (X );

Change-of-group isomorphism: KG (Y ×H G )
∼=−→ KH(Y );
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Schwede’s global homotopy theory: a modern approach

The category L
objects: inner product real spaces;

morphism set L(V ,W ): the linear isometric embeddings.

An orthogonal space is a continuous functor from L to the category of
topological spaces.

The category O
objects: inner product real spaces;

morphism set O(V ,W ): the Thom space of the total space

ξ(V ,W ) := {(w , φ) ∈W × L(V ,W )|w ⊥ φ(V )}
of the orthogonal complement vector bundle.

An orthogonal spectrum is a based continuous functor from O to the
category of based topological spaces.
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Model structures on orthogonal spectra [Schwede]

level model structure;

strong level model structure;

global model structure;

Homotopy groups of an orthogonal spectrum

πG0 (X ) = colimV∈s(UG )[SV ,X (V )]G .

πGk (X ) = πG0 (ΩkX ) and πG−k(X ) = πG0 (Sk ∧ X ).

A morphism f : X −→ Y of orthogonal spectra is a global

equivalence if πGk (f ) : πGk (X )
∼=−→ πGk (Y ) for all compact Lie groups

G and all integers k .
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Relation with orthogonal G−spectra

Orthogonal spectra
u //

Equivariant orthogonal spectra
arise?nn

u: X 7→ X 〈G 〉 underlying orthogonal G−spectrum;

πGk (X ) = πGk (X 〈G 〉).

arise: {XG}G with each XG an orthogonal G−spectrum.
yes iff for any trivial G−representation V , the G−action on XG (V ) is
trivial.
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Other global homotopy theories

equivalent to Schwede’s global homotopy theory;

easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

enriched indexed categories;

Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

infinity categories;

easier to work with for elliptic cohomology theories.

Zhen Huan: Almost global homotopy theory, 2018

add restriction maps to the category O;

Quasi-theories can be globalized.
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Motivating example: quasi-elliptic cohomology

QEll∗G (X ) =
∏

g∈G tors
conj

K ∗ΛG (g)(X g ) [Huan]

QEll∗G (X )⊗Z[q±] Z((q)) = (K ∗Tate)G (X );

Change-of-group isomorphism: QEll∗G (G ×H X ) ∼= QEll∗H(X ).

Question: does global elliptic cohomology theory exist?

Jacob Lurie: Elliptic cohomology theories can be globalized.

Nora Ganter: Quasi-elliptic cohomology has better chances than
Grojnowski equivariant elliptic cohomology theory to be put together
naturally in a uniform way and made into an ultra-commutative
global cohomology theory in the sense of Schwede.

Cohomology theories with the change-of-group isomorphisms can
PROBABLY be globalized.

We constructed an orthogonal G−spectrum for QEll∗G (−), which cannot
give a global spectrum in Schwede’s sense.
[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]
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The birth of almost global homotopy theory [Huan]

Observation: restriction maps don’t need to be identity maps.

{En
G , σG ,n}n,G : equivariant spectra representing {E ∗G (−)}G .

En
G 'H En

H for H
i
↪→ G .

For an orthogonal spectrum X , X (i∗(V )) = i∗X (V ) for any
G−representation V .

The new diagram D0: add restriction maps to L
objects: (G ,V ) with G 6 O(V ) finite

morphisms: φ = (φ1, φ2) : (G ,V ) −→ (H,W ) with φ2 : V −→W a
linear isometric embedding and φ1 : H ∩ O(V ) −→ G a group
homomorphism.

G // O(V )

φ∗2
��

H ∩ O(V )

φ1

OO

// O(W )
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Setting up the theory [Huan]

The feature of D0

D0 is a symmetric monoidal category.

D0 is a generalized Reedy category in Berger and Moerdijk’s sense.

linear isometric embedding: raising degree;
restriction map: lowering degree.

We can also define D0−space and D0−spectrum.

A D0−space is a continuous functor from D0 to the category of based
compactly generated weak Hausdorff spaces.
A D0−spectrum X consists of

a based G−space X (G ,V );

a G × H−equivariant based structure map
σ(G ,V ),(H,W ) : SW ∧ X (G ,V ) −→ X (G × H,V ⊕W )

A morphism of D0−spectra: compatible with the structure maps.

But these are NOT the right subjects to study.
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compactly generated weak Hausdorff spaces.
A D0−spectrum X consists of

a based G−space X (G ,V );

a G × H−equivariant based structure map
σ(G ,V ),(H,W ) : SW ∧ X (G ,V ) −→ X (G × H,V ⊕W )

A morphism of D0−spectra: compatible with the structure maps.

But these are NOT the right subjects to study.
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The right subject: DW
0 −spectra [Huan]

The category D0T
W

the full subcategory of D0T consisting of those objects X : D0 −→ T that
maps each restriction map (G ,V ) −→ (H,V ) to an H−weak equivalence.

SpD0
W : the category of DW

0 −spectra

A DW
0 −spectrum X is both a D0−spectrum and a D0−space in D0T

W .

Relation with Schwede’s global homotopy theory

(P a Q) : SpO
Q←→
P

SpD0
W

• The Reedy model structure on SpD0
W is Quillen equivalent to the

Fin−level model structure on orthogonal spectra.
• The global model structure on SpD0

W is Quillen equivalent to the
Fin−global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]
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Quasi-theories [Huan]

Divisible group: a better algebraic object associated to an elliptic curve
than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

0 −→ Gm −→ Gn −→ (Q/Z)n −→ 0.

Gm: formal group of Tate K-theory; Γ((Gm⊕Zn Qn)[pk ]) = K 0
n,Tate(BZpk ).

The corresponding quasi-theory:
QK ∗n,G (X ) := K ∗(Λn(X//G )) ∼=

∏
σ∈Gn

z

K ∗Λn
G (σ)(X σ).

K ∗n,TateG (X ) ∼= QK ∗n,G (X )⊗Z[q±]⊗n Z((q))⊗n.

Quasi-theories

QE ∗n,G (X ) := E ∗(Λn(X//G )) ∼=
∏
σ∈Gn

z

E ∗n,Λn
G (σ)(X σ).

[Zhen Huan: Quasi-theories, 2018]
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The globalization of Quasi-theories [Huan]

Theorem

If the theory {E ∗G (−)}G can be globalized, there is a DW
0 −spectrum

representing the quasi-theory {QE ∗n,G (−)}G .
In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory,
can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis]
[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]
[Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018]
[Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal
component of its divisible group; when the étale component varies, the
globalness does not change.
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Thank you.
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