Almost Global Homotopy Theory

Zhen Huan

Sun Yat-sen University

October 10, 2018

- **•** Preliminary: classical homotopy theory.
- Model category;
- Equivariant homotopy theory;
- Global homotopy theory;
- Almost global homotopy theory;
- **•** Examples: Quasi-theories.

- What are its key features?
- What are its key components?

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each *n* and each *x*.

homotopy equivalence \Rightarrow weak homotopy equivalence.

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

Motivating example: the category of topological spaces:

- What are its key features?
- What are its key components?

weak homotopy equivalence

 $f: X \longrightarrow Y$ is a weak homotopy equivalence if

 $f_* : \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

 X^0 : a discrete set. X^{n+1} : attach $(n+1)-$ cells D^{n+1} to X^n along attaching maps $S^n\longrightarrow X^n.$

• Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0, 1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

- **•** constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

$p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting

Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0, 1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

- constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$
X \times \{0\} \xrightarrow{f} E
$$

\n
$$
\downarrow \stackrel{\overline{h}}{\downarrow} \qquad \qquad \overline{h} \qquad \qquad \downarrow F
$$

\n
$$
X \times [0, 1] \xrightarrow{h} B
$$

Example

- **o constant map;** covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$
X \times \{0\} \xrightarrow{f} E
$$

\n
$$
\downarrow \stackrel{\overline{h}}{\downarrow} \qquad \qquad \overline{h} \qquad \qquad \downarrow F
$$

\n
$$
X \times [0, 1] \xrightarrow{h} B
$$

Example

- **o constant map; covering space;** fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

 $p: E \longrightarrow B$ satisfying the Homotopy Lifting Property w.r.t $X = D^n$.

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) Coctober 10, 2018 4 / 24

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$
X \times \{0\} \xrightarrow{f} E
$$

\n
$$
\downarrow \stackrel{\overline{h}}{\downarrow} \qquad \qquad \overline{h} \qquad \qquad \downarrow F
$$

\n
$$
X \times [0, 1] \xrightarrow{h} B
$$

Example

- **o** constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$
X \times \{0\} \xrightarrow{f} E
$$

\n
$$
\downarrow \stackrel{\overline{h}}{\downarrow} \qquad \qquad \overline{h} \qquad \qquad \downarrow F
$$

\n
$$
X \times [0, 1] \xrightarrow{h} B
$$

Example

- **o** constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

 $p: E \longrightarrow B$ is called a fibration if it satisfies the Homotopy Lifting Property, i.e. given any map $f : X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

$$
X \times \{0\} \xrightarrow{f} E
$$

\n
$$
\downarrow \stackrel{\overline{h}}{\downarrow} \qquad \qquad \overline{h} \qquad \qquad \downarrow F
$$

\n
$$
X \times [0, 1] \xrightarrow{h} B
$$

Example

- **o** constant map; covering space; fiber bundle.
- composition; pullback; product; retract; sequential inverse limits.

Serre fibration

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy **Extension Property,** i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\emptyset \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

 $i: A \longrightarrow X$ is called a cofibration if $i: A \longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f : A \longrightarrow X$, homotopy $h: A \times [0, 1] \longrightarrow Y$ with $h_0 = f \circ i$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow Y$ making the diagram commute.

- The inclusions $\varnothing \hookrightarrow X$; $\{0\} \hookrightarrow [0,1]$; $S^{n-1} \hookrightarrow D^n$;
- composition; pushouts; coproducts; retracts; sequential colimits;
- Inclusion of a subcomplex into a CW-complex;
- Retract of a relative cell complex.

• Weak Equivalence • Fibration • Cofibration.

• 2-out-of-3: If two of f, g , gf are weak equivalences, so is the third.

If g is a weak equivalence/fibration/cofibration, then so is f.

Lifting: $A \xrightarrow{f} X$ $i \mid h \mid p$ $B \longrightarrow Y$?

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map (\mathcal{C}) \longrightarrow Map (\mathcal{C}) .

- Weak Equivalence Fibration Cofibration.
	- 2-out-of-3: If two of f, g , gf are weak equivalences, so is the third.

If g is a weak equivalence/fibration/cofibration, then so is f.

Lifting: $A \xrightarrow{f} X$ $i \mid h \mid p$ $B \longrightarrow Y$?

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map (\mathcal{C}) \longrightarrow Map (\mathcal{C}) .

- Weak Equivalence Fibration Cofibration.
	- 2-out-of-3: If two of f, g , gf are weak equivalences, so is the third.

If g is a weak equivalence/fibration/cofibration, then so is f .

Lifting: $A \xrightarrow{f} X$ $i \mid h \mid p$ $B \longrightarrow Y$?

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map (\mathcal{C}) \longrightarrow Map (\mathcal{C}) .

- Weak Equivalence Fibration Cofibration.
	- 2-out-of-3: If two of f, g, gf are weak equivalences, so is the third.
	- Retracts: A f ľ $\frac{1}{i}$ \rightarrow 1 id $\overrightarrow{B \longrightarrow r}$ g ľ. $\Rightarrow A$ f ľ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$ id f is a retract of g .

If g is a weak equivalence/fibration/cofibration, then so is f .

Lifting: A i ŗ $f \rightarrow X$ p ľ B h ? $_{g}\rightarrow$ Y

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow \text{Map}(\mathcal{C})$. $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a

trivial fibration, $\gamma(f)$ is a trivial cofibration, $\delta(f)$ is a fibration.

- Weak Equivalence Fibration Cofibration.
	- 2-out-of-3: If two of f, g , gf are weak equivalences, so is the third.
	- Retracts: A f ľ $\frac{1}{i}$ \rightarrow 1 id $\overrightarrow{B \longrightarrow r}$ g ľ. $\Rightarrow A$ f ľ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$ id f is a retract of g .

If g is a weak equivalence/fibration/cofibration, then so is f .

Lifting: A i ŗ $f \rightarrow X$ p ľ B h ? $_{g}\rightarrow$ Y

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map (\mathcal{C}) \longrightarrow Map (\mathcal{C}) .

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

- **homotopy equivalence**
- **•** fibration
- **e** closed cofibration

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \backsim Top[hoequiv]^{-1}$.

Classical Quillen Model Structure on Topological Spaces

- **weak homotopy equivalence**
- **Serre fibration**
- retract of relative cell complex

- **homotopy equivalence**
- **•** fibration
- **e** closed cofibration

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \backsim Top[hoequiv]^{-1}$.

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

- **homotopy equivalence**
- **•** fibration
- **e** closed cofibration

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \backsim Top[hoequiv]^{-1}$.

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- **o** fibration
- **e** closed cofibration

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \backsim Top[hoequiv]^{-1}$

Classical Quillen Model Structure on Topological Spaces

- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- **o** fibration
- **e** closed cofibration

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \backsim Top[hoequiv]^{-1}$
- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- **o** fibration
- **e** closed cofibration

- objects: topological spaces.
- morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. Ho(Top) v Top[hoequiv]

- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- **o** fibration
- **e** closed cofibration

Ho(Top): the associated homotopy category

- o objects: topological spaces.
- **•** morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. Ho(Top) v Top[hoequiv]⁻¹

- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- **o** fibration
- **e** closed cofibration

Ho(Top): the associated homotopy category

- o objects: topological spaces.
- **•** morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $Ho(Top) \nightharpoonup Top[hoequiv]$

- weak homotopy equivalence
- **Serre fibration**
- retract of relative cell complex

Hurewicz Model Structure on Topological Spaces

- homotopy equivalence
- **o** fibration
- **e** closed cofibration

Ho(Top): the associated homotopy category

- o objects: topological spaces.
- **•** morphisms: homotopy classes of maps.

equivalent to formally inverting the homotopy equivalence. $\textsf{Ho}(\textsf{Top}) \backsim \textsf{Top}[\textsf{hoequiv}]^{-1}.$

 $C:$ a category. $W:$ a subcategory of weak equivalences.

• same objects as \mathcal{C} ;

• morphism: a finite string of composable arrows (f_1, f_2, \dots, f_n) where f_i

- \bullet either a morphism in $\mathcal C$
- or w^{-1} , $w \in \mathcal{W}$.

$$
Ho(C) := F(C, W^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle
$$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \stackrel{R}{\to} \mathcal{D}$. Quillen equivalence: $\textit{Ho}(\mathcal{C}) \overset{\mathbb{R}}{\underset{\mathbb{L}}{\to}} \textit{Ho}(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $C:$ a category. $W:$ a subcategory of weak equivalences.

```
• same objects as \mathcal{C};
```
• morphism: a finite string of composable arrows (f_1, f_2, \dots, f_n) where f_i

- \bullet either a morphism in $\mathcal C$
- or w^{-1} , $w \in \mathcal{W}$.

```
Quillen adjunction: (L \dashv R) : \mathcal{C} \stackrel{R}{\to} \mathcal{D}.
Quillen equivalence: \textit{Ho}(\mathcal{C}) \overset{\mathbb{R}}{\underset{\mathbb{L}}{\to}} \textit{Ho}(\mathcal{D}).
```
Homotopy Category $Ho(\mathcal{C})$

 $C:$ a category. $W:$ a subcategory of weak equivalences.

The free category $\mathit{F}(\mathcal{C},\mathcal{W}^{-1})$

• same objects as \mathcal{C} ;

• morphism: a finite string of composable arrows (f_1, f_2, \dots, f_n) where f_i is

- \bullet either a morphism in $\mathcal C$
- or w^{-1} , $w \in \mathcal{W}$.

Quillen adjunction: $(L \dashv R) : \mathcal{C} \stackrel{R}{\to} \mathcal{D}$. Quillen equivalence: $\textit{Ho}(\mathcal{C}) \overset{\mathbb{R}}{\underset{\mathbb{L}}{\to}} \textit{Ho}(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $C:$ a category. $W:$ a subcategory of weak equivalences.

The free category $\mathit{F}(\mathcal{C},\mathcal{W}^{-1})$

• same objects as \mathcal{C} ;

• morphism: a finite string of composable arrows (f_1, f_2, \dots, f_n) where f_i is

- \bullet either a morphism in $\mathcal C$
- or w^{-1} , $w \in \mathcal{W}$.

 $Ho(C) := F(C, W^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \stackrel{R}{\to} \mathcal{D}$. Quillen equivalence: $\textit{Ho}(\mathcal{C}) \overset{\mathbb{R}}{\underset{\mathbb{L}}{\to}} \textit{Ho}(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $C:$ a category. $W:$ a subcategory of weak equivalences.

The free category $\mathit{F}(\mathcal{C},\mathcal{W}^{-1})$

• same objects as \mathcal{C} ;

• morphism: a finite string of composable arrows (f_1, f_2, \dots, f_n) where f_i is

 \bullet either a morphism in $\mathcal C$

$$
\bullet \ \text{or} \ w^{-1}, \ w \in \mathcal{W}.
$$

 $Ho(C) := F(C, W^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$

Morphisms $C \longrightarrow D$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \stackrel{\mathcal{R}}{\to} \mathcal{D}$.

Quillen equivalence: $\textit{Ho}(\mathcal{C}) \overset{\mathbb{R}}{\underset{\mathbb{L}}{\to}} \textit{Ho}(\mathcal{D}).$

Homotopy Category $Ho(\mathcal{C})$

 $C:$ a category. $W:$ a subcategory of weak equivalences.

The free category $\mathit{F}(\mathcal{C},\mathcal{W}^{-1})$

• same objects as \mathcal{C} ;

• morphism: a finite string of composable arrows (f_1, f_2, \dots, f_n) where f_i is

 \bullet either a morphism in $\mathcal C$

$$
\bullet \ \text{or} \ w^{-1}, \ w \in \mathcal{W}.
$$

 $Ho(C) := F(C, W^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$

Morphisms $C \longrightarrow \mathcal{D}$

Quillen adjunction:
$$
(L \dashv R) : C \xrightarrow{R} \mathcal{D}
$$
.

Quillen equivalence:
$$
Ho(C) \xrightarrow{\mathbb{R}} Ho(\mathcal{D})
$$
.

Equivariant homotopy theory

G−CW complex

 \mathcal{X}^{0} : disjoint union of orbits $\mathcal{G}/\mathcal{H}.$

 X^{n+1} : attach $\mathsf{G}\mathrm{-}$ cells $\mathsf{G}/H\times D^{n+1}$ to X^n along attaching $\mathsf{G}\mathrm{-}$ maps

 $G/H \times S^n \longrightarrow X^n$.

 $GTop \longrightarrow [Orb_G^{op}, Top]$ $X \mapsto (G/H \mapsto X^H)$

$$
\underline{\pi}_n(X)(G/H)=\pi_n(X^H).
$$

We have the equivalence of the homotopy categories

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) Coctober 10, 2018 9 / 24

G−CW complex

 \mathcal{X}^{0} : disjoint union of orbits $\mathcal{G}/\mathcal{H}.$

 X^{n+1} : attach $\mathsf{G}\mathrm{-}$ cells $\mathsf{G}/H\times D^{n+1}$ to X^n along attaching $\mathsf{G}\mathrm{-}$ maps

 $G/H \times S^n \longrightarrow X^n$.

Equivariant homotopy group

 $GTop \longrightarrow [Orb^{\mathit{op}}_G, \mathit{Top}]$ $X \mapsto (\mathsf{G}/H \mapsto X^H)$

 $\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$

We have the equivalence of the homotopy categories

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) October 10, 2018 9 / 24

G−CW complex

 \mathcal{X}^{0} : disjoint union of orbits $\mathcal{G}/\mathcal{H}.$

 X^{n+1} : attach $\mathsf{G}\mathrm{-}$ cells $\mathsf{G}/H\times D^{n+1}$ to X^n along attaching $\mathsf{G}\mathrm{-}$ maps

 $G/H \times S^n \longrightarrow X^n$.

Equivariant homotopy group

 $GTop \longrightarrow [Orb^{\mathit{op}}_G, \mathit{Top}]$ $X \mapsto (\mathsf{G}/H \mapsto X^H)$

$$
\underline{\pi}_n(X)(G/H)=\pi_n(X^H).
$$

We have the equivalence of the homotopy categories

 $Ho(GTop) \stackrel{\cong}{\longrightarrow} Ho([Orb_G^{op}, Top]).$

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) October 10, 2018 9 / 24

G−CW complex

 \mathcal{X}^{0} : disjoint union of orbits $\mathcal{G}/\mathcal{H}.$

 X^{n+1} : attach $\mathsf{G}\mathrm{-}$ cells $\mathsf{G}/H\times D^{n+1}$ to X^n along attaching $\mathsf{G}\mathrm{-}$ maps

 $G/H \times S^n \longrightarrow X^n$.

Equivariant homotopy group

 $GTop \longrightarrow [Orb^{\mathit{op}}_G, \mathit{Top}]$ $X \mapsto (\mathsf{G}/H \mapsto X^H)$

$$
\underline{\pi}_n(X)(G/H)=\pi_n(X^H).
$$

Elmendorf's theorem

We have the equivalence of the homotopy categories

$$
Ho(GTop) \stackrel{\scriptscriptstyle\smile}{\longrightarrow} Ho([Orb^{\scriptscriptstyle\circ p}_G, Top]).
$$

Which is the BEST model?

Orthogonal G−spectra.

Combine the best features of other models.

Coordinate-free.

Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G−spectra.

Why BEST?

Combine the best features of other models.

Coordinate-free.

Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G−spectra.

Why BEST?

Combine the best features of other models.

Coordinate-free.

Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G−spectra.

Why BEST?

Combine the best features of other models.

- **Coordinate-free.**
- **•** Their weak equivalence implies isomorphism of homotopy groups.

Orthogonal G-spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G−spaces and continuous based maps.

A G–continuous functor $X : \mathcal{I}_G \longrightarrow \mathcal{T}_{OPG}$.

An \mathcal{I}_G- space X with a natural transformation $X(-) \wedge S^{-} \longrightarrow X(-\oplus -)$ such that the associativity and unitality diagrams commute.

$$
\pi_q^H(X) = \text{colim}_V \ \pi_q^H(\Omega^V X(V)) \ \text{ if } q \ge 0,
$$

$$
\pi_{-q}^H(X) = \text{colim}_{V \supset \mathbb{R}^q} \ \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \ \text{ if } q > 0.
$$

Orthogonal G-spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G−spaces and continuous based maps.

\mathcal{I}_G –space

A G–continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

An \mathcal{I}_G- space X with a natural transformation $X(-) \wedge S^{-} \longrightarrow X(-\oplus -)$ such that the associativity and unitality diagrams commute.

$$
\pi_q^H(X) = \text{colim}_V \ \pi_q^H(\Omega^V X(V)) \ \text{ if } q \ge 0,
$$

$$
\pi_{-q}^H(X) = \text{colim}_{V \supset \mathbb{R}^q} \ \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \ \text{ if } q > 0.
$$

Orthogonal G – spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G −spaces and continuous based maps.

\mathcal{I}_G –space

A G–continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G−spectrum

An \mathcal{I}_G- space X with a natural transformation $X(-)\wedge S^-\longrightarrow X(-\oplus -)$ such that the associativity and unitality diagrams commute.

$$
\pi_q^H(X) = \text{colim}_V \ \pi_q^H(\Omega^V X(V)) \ \text{ if } q \ge 0,
$$

$$
\pi_{-q}^H(X) = \text{colim}_{V \supset \mathbb{R}^q} \ \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \ \text{ if } q > 0.
$$

Orthogonal G – spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G−spaces and continuous based maps.

\mathcal{I}_G –space

A G–continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G−spectrum

An \mathcal{I}_G- space X with a natural transformation $X(-)\wedge S^-\longrightarrow X(-\oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal $\mathsf{G}-$ spectrum $\pi^H_q(X)$

$$
\pi_q^H(X) = \text{colim}_V \ \pi_q^H(\Omega^V X(V)) \ \text{ if } q \ge 0,
$$

$$
\pi_{-q}^H(X) = \text{colim}_{V \supset \mathbb{R}^q} \ \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \ \text{ if } q > 0.
$$

 $f: X \longrightarrow Y$: induces isomorphisms on all homotopy groups.

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) October 10, 2018 11 / 24

Orthogonal G−spectrum [MMSS]

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G−spaces and continuous based maps.

\mathcal{I}_G –space

A G–continuous functor $X : \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G−spectrum

An \mathcal{I}_G- space X with a natural transformation $X(-)\wedge S^-\longrightarrow X(-\oplus -)$ such that the associativity and unitality diagrams commute.

Homotopy groups of an orthogonal $\mathsf{G}-$ spectrum $\pi^H_q(X)$

$$
\pi_q^H(X) = \text{colim}_V \ \pi_q^H(\Omega^V X(V)) \ \text{ if } q \ge 0,
$$

$$
\pi_{-q}^H(X) = \text{colim}_{V \supset \mathbb{R}^q} \ \pi_0^H(\Omega^{V - \mathbb{R}^q} X(V)) \ \text{ if } q > 0.
$$

The weak equivalence of interest: the π_* $\overline{-}$ isomorphism

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

 $\mathcal{K}_{G}^{0}(X)$: the Grothendieck group of the isomorphism classes of G $-$ vector bundles over the G−space X.

 $K^0_{\{e\}}(X) = K^0(X).$ $K^0_G(\text{pt})\cong RG.K^0_{\mathbb{Z}/n}(\text{pt})\cong \mathbb{Z}[x^{\pm}]/\langle x^n-1\rangle.$ $K^0_{\mathbb{T}}(\text{pt})\cong \mathbb{Z}[q^{\pm}].$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G −space X.

 $K^0_{\{e\}}(X) = K^0(X).$ $K^0_G(\text{pt})\cong RG.K^0_{\mathbb{Z}/n}(\text{pt})\cong \mathbb{Z}[x^{\pm}]/\langle x^n-1\rangle.$ $K^0_{\mathbb{T}}(\text{pt})\cong \mathbb{Z}[q^{\pm}].$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G−space X.

Example (When G varies)

 $\mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X).$ $\mathcal{K}_G^0(\mathrm{pt})\cong \mathcal{RG}. \mathcal{K}_{\mathbb{Z}/n}^0(\mathrm{pt})\cong \mathbb{Z}[x^{\pm}]/\langle x^n-1\rangle.$ $\mathcal{K}_{\mathbb{T}}^0(\mathrm{pt})\cong \mathbb{Z}[q^{\pm}].$

- Restriction map: $K_G(X) \longrightarrow K_H(X);$
- Induced map: $K_H(X) \longrightarrow K_G(X)$:

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G−space X.

Example (When G varies)

 $\mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X).$ $\mathcal{K}_{G}^{\delta}(\mathrm{pt}) \cong \mathcal{RG}. \mathcal{K}_{\mathbb{Z}/n}^{0}(\mathrm{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^{n}-1 \rangle. \ \ \mathcal{K}_{\mathbb{T}}^{0}(\mathrm{pt}) \cong \mathbb{Z}[q^{\pm}].$

- Restriction map: $K_G(X) \longrightarrow K_H(X);$
- Induced map: $K_H(X) \longrightarrow K_G(X)$:

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G−space X.

Example (When G varies)

$$
K^0_{\{e\}}(X) = K^0(X).
$$

\n
$$
K^0_G(\text{pt}) \cong RG.K^0_{\mathbb{Z}/n}(\text{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ K^0_{\mathbb{T}}(\text{pt}) \cong \mathbb{Z}[q^{\pm}].
$$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G−space X.

Example (When G varies)

$$
K^0_{\{e\}}(X) = K^0(X).
$$

\n
$$
K^0_G(\text{pt}) \cong RG.K^0_{\mathbb{Z}/n}(\text{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ K^0_{\mathbb{T}}(\text{pt}) \cong \mathbb{Z}[q^{\pm}].
$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$:
- Change-of-group isomorphism: $K_G(Y\times_H G)\stackrel{\cong}{\longrightarrow} K_H(Y);$

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G−space X.

Example (When G varies)

$$
K^0_{\{e\}}(X) = K^0(X).
$$

\n
$$
K^0_G(\text{pt}) \cong RG.K^0_{\mathbb{Z}/n}(\text{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ K^0_{\mathbb{T}}(\text{pt}) \cong \mathbb{Z}[q^{\pm}].
$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X);$

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $\mathcal{K}^{0}_{G}(X)$: the Grothendieck group of the isomorphism classes of $G-$ vector bundles over the G−space X.

Example (When G varies)

$$
K^0_{\{e\}}(X) = K^0(X).
$$

\n
$$
K^0_G(\text{pt}) \cong RG.K^0_{\mathbb{Z}/n}(\text{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ K^0_{\mathbb{T}}(\text{pt}) \cong \mathbb{Z}[q^{\pm}].
$$

Relations between different equivariant K-theories

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;

Schwede's global homotopy theory: a modern approach

The category L

- objects: inner product real spaces;
- morphism set $L(V, W)$: the linear isometric embeddings.

An **orthogonal space** is a continuous functor from $\mathbb L$ to the category of topological spaces.

- objects: inner product real spaces;
- morphism set $O(V, W)$: the Thom space of the total space

$$
\xi(V,W):=\{(w,\phi)\in W\times L(V,W)|w\perp\phi(V)\}\
$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

The category L

- objects: inner product real spaces;
- morphism set $L(V, W)$: the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

- · objects: inner product real spaces;
- morphism set $O(V, W)$: the Thom space of the total space

$$
\xi(V,W):=\{(w,\phi)\in W\times L(V,W)|w\perp\phi(V)\}\
$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

The category L

- objects: inner product real spaces;
- morphism set $L(V, W)$: the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category O

- objects: inner product real spaces;
- morphism set $O(V, W)$: the Thom space of the total space

$$
\xi(V,W):=\{(w,\phi)\in W\times L(V,W)|w\perp\phi(V)\}\
$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.
The category $\mathbb L$

- objects: inner product real spaces;
- morphism set $L(V, W)$: the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category O

- objects: inner product real spaces;
- morphism set $O(V, W)$: the Thom space of the total space

$$
\xi(V,W):=\{(w,\phi)\in W\times L(V,W)|w\perp\phi(V)\}\
$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

· level model structure:

- strong level model structure;
- global model structure;

$$
\pi_0^G(X) = \text{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.
$$

$$
\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).
$$

- **·** level model structure:
- strong level model structure;
- global model structure;

$$
\pi_0^G(X) = \text{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.
$$

$$
\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).
$$

- **·** level model structure:
- strong level model structure;
- global model structure;

$$
\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.
$$

$$
\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).
$$

- **·** level model structure:
- strong level model structure;
- global model structure;

Homotopy groups of an orthogonal spectrum

$$
\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.
$$

$$
\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).
$$

- **·** level model structure:
- strong level model structure;
- global model structure;

Homotopy groups of an orthogonal spectrum

$$
\pi_0^G(X) = \operatorname{colim}_{V \in s(U_G)}[S^V, X(V)]^G.
$$

$$
\pi^G_k(X)=\pi_0^G(\Omega^kX) \text{ and } \pi_{-k}^G(X)=\pi_0^G(S^k\wedge X).
$$

- **·** level model structure:
- strong level model structure;
- global model structure;

Homotopy groups of an orthogonal spectrum

$$
\pi_0^G(X) = \text{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.
$$

$$
\pi_k^G(X)=\pi_0^G(\Omega^kX) \text{ and } \pi_{-k}^G(X)=\pi_0^G(S^k\wedge X).
$$

Orthogonal spectra $\overline{\leftarrow}$ $\overline{\leftarrow}$ = Equivariant orthogonal spectra

 \bullet u: $X \mapsto X\langle G \rangle$ underlying orthogonal G−spectrum; $\pi_k^{\mathcal{G}}(X)=\pi_k^{\mathcal{G}}(X\langle \mathcal{G}\rangle).$

• arise: $\{X_G\}_G$ with each X_G an orthogonal G−spectrum. yes iff for any trivial G−representation V, the G−action on $X_G(V)$ is trivial.

Orthogonal spectra $\overline{\leftarrow}$ $\overline{\leftarrow}$ = Equivariant orthogonal spectra

 \bullet u: $X \mapsto X\langle G \rangle$ underlying orthogonal G−spectrum; $\pi_k^G(X) = \pi_k^G(X \langle G \rangle).$

• arise: $\{X_G\}_G$ with each X_G an orthogonal G−spectrum. yes iff for any trivial G−representation V, the G-action on $X_G(V)$ is trivial.

Orthogonal spectra $\overline{\leftarrow}$ $\overline{\leftarrow}$ = Equivariant orthogonal spectra

 \bullet u: $X \mapsto X\langle G \rangle$ underlying orthogonal G−spectrum; $\pi_k^G(X) = \pi_k^G(X \langle G \rangle).$

• arise: $\{X_G\}_G$ with each X_G an orthogonal G−spectrum. yes iff for any trivial G−representation V, the G−action on $X_G(V)$ is trivial.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

• enriched indexed categories;

Atiyah-Bott-Shapiro orientation has global version.

- **•** infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

• equivalent to Schwede's global homotopy theory;

• easy to work with for specific theories.

• enriched indexed categories;

Atiyah-Bott-Shapiro orientation has global version.

- **•** infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **•** easy to work with for specific theories.

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

- **•** infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **e** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

- **•** infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **e** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

• enriched indexed categories;

Atiyah-Bott-Shapiro orientation has global version.

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **e** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **•** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **•** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- **•** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

- \bullet add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory:
- **•** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

Zhen Huan: Almost global homotopy theory, 2018

- add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory:
- **e** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

Zhen Huan: Almost global homotopy theory, 2018

- add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory:
- **e** easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- **•** easier to work with for elliptic cohomology theories.

Zhen Huan: Almost global homotopy theory, 2018

- add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

$\mathit{QEll}_{G}^{*}(X)=\prod_{g\in\mathit{G}_{conj}}\mathit{K}_{\Lambda_{G}(g)}^{*}(X^{g}% ,\Lambda_{G}(g))^{*}$

 $QEll_{G}^{*}(X)\otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q))=(K^{*}_{Tate})_{G}(X);$ Change-of-group isomorphism: $QEll^*_G(G\times_H X) \cong QEll^*_H(X)$.

- **Jacob Lurie:** Elliptic cohomology theories can be globalized.
- **Nora Ganter:** Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) October 10, 2018 17 / 24

$$
QEll_{G}^{*}(X)=\prod_{g\in\mathcal{G}_{conj}}K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

•
$$
QEll_{G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^{*})_{G}(X);
$$

Change-of-group isomorphism: $QEll^*_G(G\times_H X) \cong QEll^*_H(X)$.

- **Jacob Lurie:** Elliptic cohomology theories can be globalized.
- **Nora Ganter:** Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) October 10, 2018 17 / 24

[Huan]

$$
QEll_{G}^{*}(X)=\prod_{g\in G_{conj}} K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

$$
)\qquad \qquad [\mathsf{Huan}]
$$

- $QEll_{G}^{*}(X)\otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q))=(K_{Tate}^{*})_{G}(X);$
- Change-of-group isomorphism: $QEll^*_G(G\times_H X)\cong QEll^*_H(X)$.

- **Jacob Lurie:** Elliptic cohomology theories can be globalized.
- **Nora Ganter:** Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) October 10, 2018 17 / 24

$$
QEll_{G}^{*}(X)=\prod_{g\in G_{conj}} K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

•
$$
QEll_{G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^{*})_{G}(X);
$$

Change-of-group isomorphism: $QEll^*_G(G\times_H X)\cong QEll^*_H(X)$.

Question: does global elliptic cohomology theory exist?

- **Jacob Lurie:** Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

[Huan]

$$
QEll_{G}^{*}(X)=\prod_{g\in G_{conj}} K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

•
$$
QEll_{G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^{*})_{G}(X);
$$

Change-of-group isomorphism: $QEll^*_G(G\times_H X)\cong QEll^*_H(X)$.

Question: does global elliptic cohomology theory exist?

• Jacob Lurie: Elliptic cohomology theories can be globalized.

- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

[Huan]

$$
QEll_{G}^{*}(X)=\prod_{g\in G_{conj}} K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

•
$$
QEll_{G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^{*})_{G}(X);
$$

Change-of-group isomorphism: $QEll^*_G(G\times_H X)\cong QEll^*_H(X)$.

Question: does global elliptic cohomology theory exist?

- **Jacob Lurie**: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

) [Huan]

$$
QEll_{G}^{*}(X)=\prod_{g\in G_{conj}} K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

•
$$
QEll_{G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^{*})_{G}(X);
$$

Change-of-group isomorphism: $QEll^*_G(G\times_H X)\cong QEll^*_H(X)$.

Question: does global elliptic cohomology theory exist?

- **Jacob Lurie**: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal *G−*spectrum for $QEl{\color{red}t}_G^*(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

) [Huan]

$$
QEll_{G}^{*}(X)=\prod_{g\in G_{conj}} K_{\Lambda_{G}(g)}^{*}(X^{g})
$$

•
$$
QEll_{G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^{*})_{G}(X);
$$

Change-of-group isomorphism: $QEll^*_G(G\times_H X)\cong QEll^*_H(X)$.

Question: does global elliptic cohomology theory exist?

- **Jacob Lurie**: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.

) [Huan]

• Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal G $-$ spectrum for $QEl \epsilon^*_{G}(-)$, which cannot give a global spectrum in Schwede's sense. [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017] Zhen Huan (SYSU) [Almost Global Homotopy Theory](#page-0-0) Cotober 10, 2018 17 / 24

Observation: restriction maps don't need to be identity maps.

- $\{E_{G}^{n}, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_{G}^{*}(-)\}_{G}$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X , $X(i^*(V)) = i^*X(V)$ for any G−representation V.

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

Observation: restriction maps don't need to be identity maps.

 $\{E_{G}^{n}, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_{G}^{*}(-)\}_{G}$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.

For an orthogonal spectrum X , $X(i^*(V)) = i^*X(V)$ for any G−representation V.

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_{G}^{n}, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_{G}^{*}(-)\}_{G}$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X , $X(i^*(V)) = i^*X(V)$ for any G−representation V.

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_{G}^{n}, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_{G}^{*}(-)\}_{G}$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X , $X(i^*(V)) = i^*X(V)$ for any G−representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

• objects: (G, V) with $G \le O(V)$ finite

• morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_{G}^{n}, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_{G}^{*}(-)\}_{G}$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X , $X(i^*(V)) = i^*X(V)$ for any G−representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

• objects: (G, V) with $G \leq O(V)$ finite

• morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

Observation: restriction maps don't need to be identity maps.

- $\{E_{G}^{n}, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_{G}^{*}(-)\}_{G}$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X , $X(i^*(V)) = i^*X(V)$ for any G−representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

$$
\begin{array}{ccc}\nG & \longrightarrow & O(V) \\
\phi_1 & & \downarrow & \phi_2 \\
H \cap O(V) & \longrightarrow & O(W)\n\end{array}
$$
\bullet D_0 is a symmetric monoidal category.

 \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.

- linear isometric embedding: raising degree;
- restriction map: lowering degree.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G –space $X(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

 \bullet D_0 is a symmetric monoidal category.

 \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.

- linear isometric embedding: raising degree;
- restriction map: lowering degree.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G –space $X(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

 \bullet D_0 is a symmetric monoidal category.

\bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.

- linear isometric embedding: raising degree;
- restriction map: lowering degree.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G –space $X(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- **Inear isometric embedding: raising degree;**
	- restriction map: lowering degree.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G –space $X(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- **Inear isometric embedding: raising degree;**
	- restriction map: lowering degree.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G –space $X(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- **Inear isometric embedding: raising degree;**
	- restriction map: lowering degree.

We can also define D_0 −space and D_0 −spectrum.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 −spectrum X consists of
	- a based G –space $\overline{X}(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- **Inear isometric embedding: raising degree;**
	- restriction map: lowering degree.

We can also define D_0 −space and D_0 −spectrum.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G –space $X(G, V)$;
	- a $G \times H$ equivariant based structure map
		- $\sigma_{(\emph{G},\emph{V}),(\emph{H},\emph{W})}:S^{W}\wedge X(\emph{G},\emph{V})\longrightarrow X(\emph{G}\times \emph{H},\emph{V}\oplus \emph{W})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- linear isometric embedding: raising degree;
	- restriction map: lowering degree.

We can also define D_0 −space and D_0 −spectrum.

A D_0 −space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G -space $X(G, V)$;
	- a $G \times H$ equivariant based structure map $\sigma_{(\textsf{\textit{G}},\textsf{\textit{V}}),(\textsf{\textit{H}},\textsf{\textit{W}})}:\mathsf{S}^{\textsf{W}}\wedge\mathsf{X}(\textsf{\textit{G}},\textsf{\textit{V}})\longrightarrow\mathsf{X}(\textsf{\textit{G}}\times\textsf{\textit{H}},\textsf{\textit{V}}\oplus\textsf{\textit{W}})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- linear isometric embedding: raising degree;
	- restriction map: lowering degree.

We can also define D_0 −space and D_0 −spectrum.

A D_0 –space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G -space $X(G, V)$;

• a $G \times H$ – equivariant based structure map $\sigma_{(\textsf{\textit{G}},\textsf{\textit{V}}),(\textsf{\textit{H}},\textsf{\textit{W}})}:\mathsf{S}^{\textsf{W}}\wedge\mathsf{X}(\textsf{\textit{G}},\textsf{\textit{V}})\longrightarrow\mathsf{X}(\textsf{\textit{G}}\times\textsf{\textit{H}},\textsf{\textit{V}}\oplus\textsf{\textit{W}})$

- \bullet D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
	- **Inear isometric embedding: raising degree;**
	- restriction map: lowering degree.

We can also define D_0 −space and D_0 −spectrum.

A D_0 –space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

- A D_0 –spectrum X consists of
	- a based G -space $X(G, V)$;
	- a $G \times H$ equivariant based structure map $\sigma_{(\textsf{\textit{G}},\textsf{\textit{V}}),(\textsf{\textit{H}},\textsf{\textit{W}})}:\mathsf{S}^{\textsf{W}}\wedge\mathsf{X}(\textsf{\textit{G}},\textsf{\textit{V}})\longrightarrow\mathsf{X}(\textsf{\textit{G}}\times\textsf{\textit{H}},\textsf{\textit{V}}\oplus\textsf{\textit{W}})$

A morphism of D_0 –spectra: compatible with the structure maps.

But these are NOT the right subjects to study.

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W.$

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\to}} Sp^{D_0}_W
$$

 \bullet The Reedy model structure on $Sp^{D_0}_W$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra.

 \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

The right subject: D_0^W —spectra [Huan]

The category $D_0 T^W$

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W.$

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\to}} Sp^{D_0}_W
$$

 \bullet The Reedy model structure on $Sp^{D_0}_W$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra.

 \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

$\mathit{Sp}^{D_0}_W$: the category of $D_0^W\!-\!$ spectra

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W$.

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\to}} Sp^{D_0}_W
$$

 \bullet The Reedy model structure on $Sp^{D_0}_W$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra.

 \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

$\mathit{Sp}^{D_0}_W$: the category of $D_0^W\!-\!$ spectra

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W$.

Relation with Schwede's global homotopy theory

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\rightarrow}} Sp^{D_0}_W
$$

 \bullet The Reedy model structure on $Sp^{D_0}_W$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra. \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

$\mathit{Sp}^{D_0}_W$: the category of $D_0^W\!-\!$ spectra

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W$.

Relation with Schwede's global homotopy theory

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\rightarrow}} Sp^{D_0}_W
$$

 \bullet The Reedy model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra.

 \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

$\mathit{Sp}^{D_0}_W$: the category of $D_0^W\!-\!$ spectra

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W$.

Relation with Schwede's global homotopy theory

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\rightarrow}} Sp^{D_0}_W
$$

- \bullet The Reedy model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra.
- \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

the full subcategory of D_0T consisting of those objects $X: D_0 \longrightarrow T$ that maps each restriction map $(G, V) \longrightarrow (H, V)$ to an H–weak equivalence.

$\mathit{Sp}^{D_0}_W$: the category of $D_0^W\!-\!$ spectra

A D_0^W —spectrum X is both a D_0- spectrum and a D_0- space in $D_0\,T^W$.

Relation with Schwede's global homotopy theory

$$
(P \dashv Q) : Sp^O \stackrel{Q}{\underset{P}{\rightarrow}} Sp^{D_0}_W
$$

- \bullet The Reedy model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−level model structure on orthogonal spectra.
- \bullet The global model structure on $Sp_{W}^{D_0}$ is Quillen equivalent to the Fin−global model structure on orthogonal spectra.

 $0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}^n} \mathbb{Q}^n)[p^k]) = \mathcal{K}^0_{n,\text{Tate}}(B\mathbb{Z}_{p^k}).$ The corresponding quasi-theory:

$$
QK_{n,G}^*(X) := K^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} K_{\Lambda^n_G(\sigma)}^*(X^{\sigma}).
$$

 $\mathcal{K}_{n,\mathcal{T}\text{ate}\mathcal{G}}^{*}(X) \cong \mathcal{Q}\mathcal{K}_{n,\mathcal{G}}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$

$$
QE_{n,G}^*(X) := E^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} E_{n,\Lambda_G^n(\sigma)}^*(X^\sigma).
$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$
0\longrightarrow \mathbb{G}_m\longrightarrow \mathbb{G}_n\longrightarrow (\mathbb{Q}/\mathbb{Z})^n\longrightarrow 0.
$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m\oplus_{\mathbb{Z}^n}\mathbb{Q}^n)[p^k])=K^0_{n,\mathsf{Tate}}(B\mathbb{Z}_{p^k}).$ The corresponding quasi-theory: $QK_{n,G}^*(X) := K^*(\Lambda^n(X/\hspace{-0.1cm}/ G)) \cong \prod$ $K^*_{\Lambda^n_G(\sigma)}(X^\sigma)$. $\mathcal{K}_{n,\mathcal{T}\text{ate }G}^{*}(X) \cong Q\mathcal{K}_{n,G}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$

$$
QE_{n,G}^*(X) := E^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} E_{n,\Lambda_G^n(\sigma)}^*(X^\sigma).
$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$
0\longrightarrow \mathbb{G}_m\longrightarrow \mathbb{G}_n\longrightarrow (\mathbb{Q}/\mathbb{Z})^n\longrightarrow 0.
$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m\oplus_{\mathbb{Z}^n}\mathbb{Q}^n)[p^k])=K^0_{n,\mathsf{Tate}}(B\mathbb{Z}_{p^k}).$ The corresponding quasi-theory: $QK_{n,G}^*(X) := K^*(\Lambda^n(X/\hspace{-0.1cm}/ G)) \cong \prod$ $K^*_{\Lambda^n_G(\sigma)}(X^\sigma)$. $\mathcal{K}_{n,\mathcal{T}\text{ate}\mathcal{G}}^{*}(X) \cong \mathcal{Q}\mathcal{K}_{n,\mathcal{G}}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$

$$
QE_{n,G}^*(X) := E^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} E_{n,\Lambda_G^n(\sigma)}^*(X^\sigma).
$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$
0\longrightarrow \mathbb{G}_m\longrightarrow \mathbb{G}_n\longrightarrow (\mathbb{Q}/\mathbb{Z})^n\longrightarrow 0.
$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m\oplus_{\mathbb{Z}^n}\mathbb{Q}^n)[p^k])=K^0_{n,\mathsf{Tate}}(B\mathbb{Z}_{p^k}).$ The corresponding quasi-theory:

$$
QK_{n,G}^*(X) := K^*(\Lambda^n(X \mathscr{N} G)) \cong \prod_{\sigma \in G_2^n} K_{\Lambda^n_G(\sigma)}^*(X^{\sigma}).
$$

 $\mathcal{K}_{n,\mathcal{T}\text{ate}\mathcal{G}}^{*}(X) \cong \mathcal{Q}\mathcal{K}_{n,\mathcal{G}}^{*}(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$

$$
QE_{n,G}^*(X) := E^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} E_{n,\Lambda_G^n(\sigma)}^*(X^\sigma).
$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$
0\longrightarrow \mathbb{G}_m\longrightarrow \mathbb{G}_n\longrightarrow (\mathbb{Q}/\mathbb{Z})^n\longrightarrow 0.
$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m\oplus_{\mathbb{Z}^n}\mathbb{Q}^n)[p^k])=K^0_{n,\mathsf{Tate}}(B\mathbb{Z}_{p^k}).$ The corresponding quasi-theory:

$$
QK_{n,G}^*(X) := K^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} K_{\Lambda^n_G(\sigma)}^*(X^{\sigma}).
$$

$$
\mathcal{K}_{n,\mathcal{T}\hspace{-0.5mm}\mathit{ate}\hspace{-0.5mm} G}^*(X) \cong Q\mathcal{K}_{n,G}^*(X) \otimes_{\mathbb{Z}[q^\pm]^{ \otimes n}} \mathbb{Z}((q))^{\otimes n}.
$$

$$
QE_{n,G}^*(X) := E^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_\sigma^n} E_{n,\Lambda_G^n(\sigma)}^*(X^\sigma).
$$

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$
0\longrightarrow \mathbb{G}_m\longrightarrow \mathbb{G}_n\longrightarrow (\mathbb{Q}/\mathbb{Z})^n\longrightarrow 0.
$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m\oplus_{\mathbb{Z}^n}\mathbb{Q}^n)[p^k])=K^0_{n,\mathsf{Tate}}(B\mathbb{Z}_{p^k}).$ The corresponding quasi-theory:

$$
QK_{n,G}^*(X) := K^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_{\mathbb{Z}}} K_{\Lambda_G^n(\sigma)}^*(X^{\sigma}).
$$

$$
\mathcal{K}_{n,\mathcal{T}\hspace{-0.5mm}\mathit{ate}\hspace{-0.5mm} G}^*(X) \cong Q\mathcal{K}_{n,G}^*(X) \otimes_{\mathbb{Z}[q^\pm]^{ \otimes n}} \mathbb{Z}((q))^{\otimes n}.
$$

Quasi-theories

$$
QE_{n,G}^*(X) := E^*(\Lambda^n(X/\hspace{-0.15cm}/ G)) \cong \prod_{\sigma \in G_2^n} E_{n,\Lambda_G^n(\sigma)}^*(X^\sigma).
$$

Theorem

If the theory $\{E^*_G(-)\}_G$ can be globalized, there is a D_0^W- spectrum representing the quasi-theory $\{ \mathsf{Q}E_{n,G}^*(-) \}_G$. In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis] [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017] [Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018] [Zhen Huan: Almost global homotopy theory, 2018]

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Theorem

If the theory $\{E^*_G(-)\}_G$ can be globalized, there is a D_0^W- spectrum representing the quasi-theory $\{ \mathsf{Q}E_{n,G}^*(-) \}_G$. In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis] [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017] [Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018] [Zhen Huan: Almost global homotopy theory, 2018]

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Theorem

If the theory $\{E^*_G(-)\}_G$ can be globalized, there is a D_0^W- spectrum representing the quasi-theory $\{ \mathsf{Q}E_{n,G}^*(-) \}_G$. In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis] [Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017] [Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018] [Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the *étale* component varies, the globalness does not change.

Thank you.

https://huanzhen84.github.io/zhenhuan/Huan-Fudan-2018.pdf

- Ando, Hopkins, Strickland: "Elliptic spectra, the Witten genus and the theorem of the cube". Invent. Math. , 146(3):595–687, 2001.
- \bullet Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004;
- Atiyah, "Power operations in K-theory", Quart. J. Math. Oxford Ser. (2) 17 1966.
- Atiyah,"Equivariant K-theory and completion", J. Differential Geometry 3 1969.
- Berger, Moerdijk, "On an extension of the notion of Reedy category", Mathematische Zeitschrift, December 2011.
- **O** Bohmann, "Global orthogonal spectra", Homology, Homotopy and Applications, Vol 16 (2014), No 1, 313–332.
- Gepner, "Homotopy Topoi and Equivariant Elliptic Cohomology", Thesis (Ph.D.)University of Illinois at Urbana-Champaign. 1999.
- Gepner, Henriques, "Homotopy Theory of Orbispaces", available at arXiv:math/0701916.
- Ginzburg, Kapranov, Vasserot, "Elliptic algebras and equivariant elliptic cohomology I", available at arXiv:q-alg/9505012.
- Greenlees, May, "Localization and completion theorems for MU- module spectra", Ann. of Math. (2), 146(3) (1997), 509–544.
- Katz, Mazur, "Arithmetic moduli of elliptic curves", Annals of Mathematics Studies, vol. 108, 1985.
- Lurie, "A Survey of Elliptic Cohomology", in Algebraic Topology Abel Symposia Volume 4, 2009, pp 219–277.
- Mandell, May, "Equivariant orthogonal spectra and S-modules", Mem.,Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.
- Mandell, May, Schwede, Shipley, "Model categories of diagram spectra", Proc. London Math. Soc. 82(2001).
- May, "Equivariant homotopy and cohomology theory", CBMS Regional Conference Series in Mathematics, vol. 91, 1996.
- Rezk, "Quasi-elliptic cohomology", 2011.
- Schwede, "Global Homotopy Theory", [global.pdf](http:/\protect \kern -.1667em\relax \protect \kern -.1667em\relax /www.math.uni-bonn.de/people/schwede/global.pdf).