Introduction and Definition

Quasi-elliptic cohomology is motivated by Nora Ganter; set up by Charles Rezk; developed by Zhen Huan.

Tate K-theory	Expression
 Tate curve: classified as the completion of the algebraic stack of some nice generalized elliptic curves at infinity. Tate K-theory: generalized elliptic cohomology associated to the Tate curve. Quasi-elliptic cohomology	$\begin{array}{l} \mathcal{QEII}^*_G(X) = \prod_{g \in G^{tors}_{conj}} \\ \bullet X: \ \text{compact } G-\text{spa} \\ \bullet G^{tors}_{conj}: \ \text{a set of repre} \\ G-\text{conjugacy class} \\ \bullet \Lambda_G(g) = C_G(g) \times \mathbb{R}/ \\ \bullet \Lambda_G(g) \ \text{acts on } X^g \ \text{by} \end{array}$
 A variant of Tate K-theroy. Not an elliptic cohomology. Geometric features of Tate curve. Neat form. 	$[h, t] \cdot x := h \cdot x.$ Relation with Tate K-t $QEII^*_G(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q))$
• Restriction map: $QEll_G(X) \longrightarrow QEll_G(X)$ • Künneth map: $QEll_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEll_H^*$ • Change-of-group isomorphism: QE • Induced map: $QEll_H(X) \longrightarrow QEll_G(X)$	$egin{aligned} & I_{H}(X); \ & (Y) \longrightarrow QEII^{*}_{G imes H}(X imes Y) \ & \cong & \cong & QEII_{H}(X); \end{aligned}$
Loop Space Construction	
An old idea by Witten	
$LX = \mathbb{C}^{\infty}(S^1, X), \mathbb{T} \text{ acts on } S^1, G \text{ acts}$ $Ell^*(X) \leftarrow$	s on X. $\stackrel{?}{\rightsquigarrow} K^*_{\mathbb{T}}(LX)$
Construction Loops~Bibundles: 1-morphisms in C	$Gpd[W^{-1}].$
$Loop(X/\!/G) := Bibun(S^1/\!/*, X/\!/G)$ • Objects: $\mathcal{P} := \{S^1 \not= P \not= X\}$ • π : principal G-bundle over S^1 • $f : G$ -equivariant; • Morphism $\mathcal{P} \longrightarrow \mathcal{P}'$: • G -bundle map $\alpha : P \longrightarrow P'$ $S^1 \not= P \not= X$ $\pi \downarrow \alpha \not= f'$	■ Loop ^{ext} (X//G): Add the ■ Objects: SAME. ■ Morphism $\mathcal{P} \longrightarrow \mathcal{P}'$ ■ G-bundle map $\alpha : P$ ■ t ∈ ℝ. $S^{1} \frac{\pi}{\pi} P^{-1}$ $S^{1} \frac{\pi}{\pi'} P'$
$\Lambda(X//G)$: a groupoid of constant loop	S
A subgroupoid of $Loop^{ext}(X/\!\!/ G)$ $\wedge(X/\!\!/ G) :=$ $g \in QEll_G(X) \cong$	$ \underbrace{\prod_{\substack{X^g // \Lambda_G(g)}} X^g // \Lambda_G(g)}_{K_{orb}(\Lambda(X//G))} $

Quasi-Elliptic Cohomology

Zhen Huan

Homotopy Theory Summer Berlin June 18-29, 2018

Email: huanzhen2016@gr

etric nature of Tate curve	A new global homotopy theory
	Features
nal group. $Sub_{p^k}(\mathbb{G}_E).$	 Contains all the global homoto Global quasi-elliptic cohomolo The new and old global homomathematical world.
n	The category D_0 : add restriction
' its formal group.	• Objects: (G, V)
theory[Huan]ant K-theories.operation of Tate K-theory.urve[Huan])) for any integer N.	• <i>G</i> : a finite group; • <i>V</i> : a faithful <i>G</i> -representation; • Morphisms: $\phi = (\phi_1, \phi_2) : (G,$ • a linear isometric embedding $\phi_2 :$ • a group homomorphism $\phi_1 : H \cap \phi_2$
rve [Huan]	$H \cap Q$
el _A (Tate(q))	This is a generalized Reedy ca Inear isometric embedding: range decimation of the second sec
antation theory	Testriction map. lowening degi
entation theory.	The category of global spaces:
y).	 D₀T: the category of D₀-span D₀T^W: the full subcategory of each restriction map (G, V) -
$^{\prime}]/\langle q^{d}-q^{\prime e} angle .$	The relation between $D_0 T^W$ an Define
$[']/\langle q^d - q'^e \rangle.$ $X_{Tate}^*(X/\!\!/G).$	The relation between $D_0 T^W$ an Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functor
$(')/\langle q^d - q'^e \rangle.$ $X_{Tate}^*(X/\!\!/G).$	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functo
$f']/\langle q^d - q'^e \rangle$. $K^*_{Tate}(X/\!\!/G)$. Spies Periodic set to a set of the set o	The relation between $D_0 T^W$ an Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functor $(L \dashv$ • The Reedy model structure o $\mathcal{F}in$ -level model structure on
$\frac{1}{\langle q^{d} - q'^{e} \rangle}{\sum_{Tate} (X/\!/G)}.$ Spies Te ivariant elliptic cohomology [Huan]	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functo $(L \dashv$ • The Reedy model structure of $\mathcal{F}in$ -level model structure on • The global model structure of
$p(f)/\langle q^d - q'^e \rangle$. $X_{Tate}^*(X/\!/G)$. Dies P ivariant elliptic cohomology pmology $P(E(G, -), \eta, \mu)$ with G a	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functor $(L \dashv$ • The Reedy model structure of $\mathcal{F}in$ -level model structure of $\mathcal{F}in$ -level model structure of $\mathcal{F}in$ -global model structure of
$f']/\langle q^d - q'^e \rangle$. $K_{Tate}^*(X/\!\!/G)$. Dies Te ivariant elliptic cohomology mology [Huan] P ($E(G, -), \eta, \mu$) with G a $K_{G}^*(-)$ in the sense	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functor $(L \dashv$ • The Reedy model structure of $\mathcal{F}in$ -level model structure on • The global model structure of $\mathcal{F}in$ -global model structure of
$d'] / \langle q^d - q'^e \rangle.$ $K_{Tate}^*(X/\!/G).$ bises bises c ivariant elliptic cohomology omology [Huan] P ($E(G, -), \eta, \mu$) with G a $d'_{G}(-)$ in the sense (S^0)	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functo $(L \dashv$ • The Reedy model structure of $\mathcal{F}in$ -level model structure of $\mathcal{F}in$ -level model structure of $\mathcal{F}in$ -global model structure of $\mathcal{F}in$ -global model structure of $\mathcal{F}in$ -global model structure of $\mathcal{F}in$ -global model structure of \mathcal{F}
$d']/\langle q^d - q'^e \rangle$. $K_{Tate}(X/\!/G)$. gies e ivariant elliptic cohomology b (E(G, -), η , μ) with G a $G_{3}(-)$ in the sense (S^0) d Morava E-theory and	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functo $(L \dashv$ • The Reedy model structure of $\mathcal{F}in$ —level model structure of $\mathcal{F}in$ —level model structure of $\mathcal{F}in$ —global model structure of $\mathcal{F}in$ —global model structure of \mathcal{F}
$d'] / \langle q^d - q'^e \rangle$. $\chi_{Tate}(X / / G)$. gies e ivariant elliptic cohomology pmology [Huan] P ($E(G, -), \eta, \mu$) with G a $\chi_{3}(-)$ in the sense (S^0) d Morava E-theory and Im?	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functor $(L \dashv$ • The Reedy model structure of $\mathcal{F}in$ —level model structure on • The global model structure of $\mathcal{F}in$ —global model structure of $\mathcal{F}in$ —global model structure of $\mathcal{F}in$ —global model structure of $\mathcal{F}in$ —global model structure of $\mathcal{F}i$
$f']/\langle q^d - q'^e \rangle$. $f'_{Tate}(X/\!/G)$. gies e ivariant elliptic cohomology pmology [Huan] P ($E(G, -), \eta, \mu$) with G a $f'_{G}(-)$ in the sense (S^0) d Morava E-theory and Im? n on $E(G, V)$ is not trivial.	The relation between $D_0 T^W$ and Define $R: D_0 T^W \xrightarrow{incl} D_0 T \xrightarrow{f^*} \mathbb{I}$ We have a pair of adjoint functor $(L \dashv$ • The Reedy model structure of \mathcal{F} in-level model structure on • The global model structure of \mathcal{F} in-global model structure of \mathcal{F} in-global model structure of \mathcal{F} in-global model structure of Euture Problems • Construct the corresponding structure of • Construct Hopkins-Kuhn-Rave • Set up quasi-theory for those • Generalize the conclusions/concord of the correst of the correst of the conclusion of the conclusi
$f']/\langle q^d - q'^e \rangle$. $K_{Tate}(X/\!/G)$. gies e ivariant elliptic cohomology omology [Huan] P ($E(G, -), \eta, \mu$) with G a $f_{q}(-)$ in the sense (S^0) d Morava E-theory and Im? n on $E(G, V)$ is not trivial. iptic cohomology to fit into	 The relation between D₀T^W an Define R: D₀T^W → D₀T → I We have a pair of adjoint functor (L → The Reedy model structure of <i>Fin</i>—level model structure of <i>Fin</i>—global model structure o

[Huan]

opy theories; ogy can be defined; otopy theories describe the same

spectra.

n maps to the linear isometries category $\mathbb L$

$$V) \longrightarrow (H, W)$$

 $V \longrightarrow W;$
 $\phi_{2*}(\Sigma_{|dimV|}) \longrightarrow G;$
 $G \longrightarrow \Sigma_{|dimV|}$
 $\phi_{2*}|$
 $\phi_{2*}(\Sigma_{|dimV|}) \longrightarrow \Sigma_{|dimW|}$
tegory.
aising degree;

ree.

$D_0 T^W$

aces; of D_0T consisting of $X : D_0 \longrightarrow T$ that maps $\longrightarrow (H, V)$ to an H-weak equivalence.

$\mathsf{d} \mathbb{L}^{7}$

 $\mathbb{L}T$ with $f:\mathbb{L}\longrightarrow D_0,\ V\mapsto (\Sigma_{|dimV|},\ V)$ ors

$$R): \mathbb{L}T \xrightarrow{R}_{L} D_0 T^W$$

In $D_0 T^W$ is Quillen equivalent to the $\mathbb{L}T$. In $D_0 T^W$ is Quillen equivalent to the

on \mathbb{L}^{T} .

stable global homotopy theory. enel character theory for $QEII_G^*(-)$; with divisible group $\mathbb{G}_m \oplus (\mathbb{Q}/\mathbb{Z})^n$; onstructions on $QEII_G^*(-)$ to elliptic

 $QEII_{G}^{*}(-)$ and physics; elliptic cohomology theories and motivic