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Introduction and Definition
Quasi-elliptic cohomology is motivated by Nora Ganter; set up by Charles
Rezk; developed by Zhen Huan.

Tate K-theory
Tate curve: classified as the
completion of the algebraic stack
of some nice generalized elliptic
curves at infinity.
Tate K-theory: generalized elliptic
cohomology associated to the
Tate curve.

Quasi-elliptic cohomology
A variant of Tate K-theroy.
Not an elliptic cohomology.
Geometric features of Tate curve.
Neat form.

Expression

QEll∗G(X ) =
∏

g∈Gtors
conj

K ∗ΛG(g)(X
g)

X : compact G−space;
Gtors

conj: a set of representatives of
G−conjugacy classes in Gtors;
ΛG(g) = CG(g)× R/〈(g,−1)〉;
ΛG(g) acts on X g by
[h, t ] · x := h · x .

Relation with Tate K-theory

QEll∗G(X )⊗Z[q±]Z((q)) ∼= K ∗Tate(X//G).

Properties
Restriction map: QEllG(X ) −→ QEllH(X );
Künneth map: QEll∗G(X )⊗̂Z[q±]QEll∗H(Y ) −→ QEll∗G×H(X × Y );

Change-of-group isomorphism: QEllG(Y ×H G)
∼=−→ QEllH(Y );

Induced map: QEllH(X ) −→ QEllG(X );

Loop Space Construction [Huan]
An old idea by Witten
LX= C∞(S1,X ), T acts on S1, G acts on X .

Ell∗(X )
?

! K ∗T(LX )

Construction
Loops∼Bibundles: 1-morphisms in Gpd [W−1].

Loop(X//G) := Bibun(S1//∗,X//G)

Objects: P := {S1 Pπoo f //X}
π : principal G−bundle over S1

f : G−equivariant;
Morphism P −→ P ′:

G−bundle map α : P −→ P ′

S1 Pπoo

α��

f //X

P ′π′

aa

f ′
??

Loopext(X//G): Add the rotation
Objects: SAME.

Morphism P −→ P ′: (α, t).
G−bundle map α : P −→ P ′,
t ∈ R.

S1

t ��
Pπoo

α ��

f //X

S1 P ′
π′
oo

f ′
??

Λ(X//G): a groupoid of constant loops
A subgroupoid of Loopext(X//G)

Λ(X//G) :=
∐

g∈Gtors
conj

X g//ΛG(g)

QEllG(X ) ∼= Korb(Λ(X//G))

How Quasi-elliptic cohomology reflects geometric nature of Tate curve
History

1995, Matthew Ando, Neil Strickland:
E0(

∨
k≤0 BΣk+) ! the subgroups of the formal group.

1998, Neil Strickland: Spec(E0(BΣpk)/Itr) ∼= Subpk(GE).
2015, Tomer M.Schlank, Nathaniel Stapleton:
Spec(E0(LhBΣpk)/Itr) ∼= Subpk(GE ⊕ (Qp/Zp)h).

the homotopy theory oo
Power Operation

// its formal group.

Power operation of Quasi-elliptic cohomology theory [Huan]
Atiyah’s Power operation, as that of equivariant K-theories.
an elliptic power operation ! stringy power operation of Tate K-theory.

Classification of the finite subgroups of Tate curve [Huan]

Spec(K 0
Tate(pt//ΣN)/Itr) ∼= SubN(Tate(q)) for any integer N.

Classification of A−level structures of Tate curve [Huan]

Spec(K 0
Tate(pt//A)/IA

tr ) ∼= LevelA(Tate(q))

for any finite abelian group A.
The role of quasi-elliptic cohomology theory
Reduce the problems into questions in representation theory.
The idea of the proof

QEll0ΣN
(pt) =

∏
g∈ΣN

tors
conj

KΛG(g)(pt) =
∏

g∈ΣN
tors
conj

RΛG(g).

Use representation theory to compute

QEll0ΣN
(pt)/Itr ∼=

∏
N=de

Z[q±][q′]/〈qd − q′e〉.

Apply the relation QEll∗G(X )⊗Z[q±] Z((q)) ∼= K ∗Tate(X//G).

The Spectra of Equivariant Elliptic Cohomologies
Ginzburg, Kapranov and Vasserot’s Conjecture
Any elliptic curve A gives rise to a unique equivariant elliptic cohomology
theory, natural in A.
Orthogonal G−spectrum of quasi-elliptic cohomology [Huan]
We construct explicitly a commutative IG−FSP (E(G,−), η, µ) with G a
compact Lie group. It weakly represents QEllVG (−) in the sense

π0(E(G,V )) = QEllVG (S0)

for each faithful G−representation V .

The construction can be applied to generalized Morava E-theory and
equivariant Tate K-theory.
Can E(G,−) arise from an orthogonal spectrum?
No.
For a trivial G−representation V , the G−action on E(G,V ) is not trivial.

Then, it’s even more difficult for equivariant elliptic cohomology to fit into
the global homotopy theory!

A new global homotopy theory [Huan]
Features

Contains all the global homotopy theories;
Global quasi-elliptic cohomology can be defined;
The new and old global homotopy theories describe the same
mathematical world.

The idea: we still use diagram spectra.
The category D0: add restriction maps to the linear isometries category L

Objects: (G,V )
G: a finite group;
V : a faithful G−representation;

Morphisms: φ = (φ1, φ2) : (G,V ) −→ (H,W )
a linear isometric embedding φ2 : V −→W ;
a group homomorphism φ1 : H ∩ φ2∗(Σ|dimV |) −→ G;

G //Σ|dimV |
φ2∗

��

H ∩ φ2∗(Σ|dimV |)
φ1

OO

//Σ|dimW |

This is a generalized Reedy category.
linear isometric embedding: raising degree;
restriction map: lowering degree.

The category of global spaces: D0T W

D0T : the category of D0−spaces;
D0T W : the full subcategory of D0T consisting of X : D0 −→ T that maps
each restriction map (G,V ) −→ (H,V ) to an H−weak equivalence.

The relation between D0T W and LT
Define

R : D0T W incl−→ D0T f ∗−→ LT with f : L −→ D0, V 7→ (Σ|dimV |,V )

We have a pair of adjoint functors

(L a R) : LT
R←→
L

D0T W

The Reedy model structure on D0T W is Quillen equivalent to the
F in−level model structure on LT .
The global model structure on D0T W is Quillen equivalent to the
F in−global model structure on LT .

Future Problems
Construct the corresponding stable global homotopy theory.
Construct Hopkins-Kuhn-Ravenel character theory for QEll∗G(−);
Set up quasi-theory for those with divisible group Gm ⊕ (Q/Z)n;
Generalize the conclusions/constructions on QEll∗G(−) to elliptic
cohomology theories;

Loop space construction;
Strickland’s theorem;

Explore the relation between QEll∗G(−) and physics;
Explore the relation between elliptic cohomology theories and motivic
homotopy theory.
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